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ABSTRACT 

Ultra-sensitive native fluorescence detection of proteins with miniaturized one- and 

two-dimensional polyacrylamide gel electrophoresis was achieved with laser side-entry 

excitation, which provides both high excitation power and low background level. The 

detection limit for R-phycoerythrin protein spots in 1-D SDS-PAGE was as low as 15 fg, 

which corresponds to 40 thousand molecules only. The average detection limit of six 

standard native proteins was 5 pg per band and the dynamic range spanned more than 3 

orders of magnitude. Approximately 150 protein spots from 30 ng of total Escherichia coli 

extraction were detected on a 0.8 cm × 1 cm gel in two-dimensional separation.  

Estrogen-DNA adducts as 4-OHE1(E2)-1-N3Ade and 4- OHE1(E2)-2-NacCys were 

hypothesized as early risk assessment of prostate and breast cancers. Capillary 

electrophoresis, luminescence/absorption spectroscopy and LC-MS were used to characterize 

and detect these adducts. Monoclonal antibodies against each individual adduct were developed and 

used to enrich such compounds from urine samples of prostate and breast cancer patients as well as 

healthy people. Adduct 4-OHE1-1-N3Ade was detected at much higher level in urine from 

subjects with prostate cancer patients compared to healthy males. The same adduct and 4-

OHE1-2-NacCys were also detected at a much higher level in urine from a woman with 

breast carcinoma than samples from healthy controls. These two DNA adducts may serve as 

novel biomarkers for early diagnostic of cancers. 

The adsorption properties of R-phycoerythrin (RPE), on the fused-silica surface were 

studied using capillary electrophoresis (CE) and single molecule spectroscopy. The band 

shapes and migration times were measured in CE. Adsorption and desorption events were 

recorded at the single-molecule level by imaging of the evanescent-field layer using total 

internal reflection. The adsorbed RPE molecules on the fused-silica prism surface were 

counted with confidence based on ImageJ software. The capacity factor and desorption rate 

were estimated from the counting results. The mobility-based adsorption isotherms were 

constructed from both computer simulations and experiments to determine the capacity factor.  

Colloidal graphite was investigated as an alternative matrix for laser 

desorption/ionization and imaging mass spectrometry (MS). Conventional matrix assisted 
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desorption/ionization (MALDI) MS has strong interference peaks in low mass region (<500 

Da) and this greatly limits the application of MALDI MS for analysis of small molecules. 

Graphite assisted laser desorption/ionization (GALDI) provides good sensitivity in the 

detection of small molecules such as organic acids, flavonoids and oligosaccharides. The 

detection limit of fatty acids and flavonoids in negative ion mode are in low femtomoles 

range. Another advantage of graphite over conventional MALDI matrix is that graphite 

sprayed surfaces are very homogeneous, which is required for IMS purposes. Fruits were 

chosen to evaluate the practical utility of GALDI since many types of small molecules are 

present in them. Distribution of these small molecules in fruit slices was investigated by 

using IMS and IMS/MS.  

The possibility of discriminating isomeric disaccharides with different linkage types 

and different monosaccharide residues (glucose, galactose, and mannose at the non-reducing 

end) was investigated with tandem mass spectrometry (MS) and linear discriminant analysis 

(LDA). Acidic fullerene matrix is very suitable for the analysis of disaccharides as it has very 

clean background in the low mass region. Disaccharides with different linkage types give 

different tandem mass profiles from various cross-ring fragmentation pathways. Disaccharide 

isomers with the same linkage type but different monosaccharide residues bear the same 

fragmentation profiles, but the relative ratios of the fragment ion intensities were 

distinctively different. Statistical tool as linear discriminant analysis was used to analyze the 

tandem mass spectra. Disaccharide isomers with both different linkages and different 

monosaccharide residues were successfully discriminated. 
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CHAPTER 1. GENERAL INTRODUCTION 

 

Dissertation Organization 

This dissertation begins with a general introduction of the history and recent progress 

in electrophoresis and laser desorption ionization (LDI) mass spectrometry (MS) of small 

molecules with a list of cited references. The following chapters are arranged in such a way 

that published papers and manuscript to be submitted are each presented as separated 

chapters. Among them chapter two, three, and four are projects based on electrophoresis 

techniques; chapter five and six are projects related to LDI MS. References for each paper or 

manuscript are attached to the end of each chapter. The last chapter (chapter seven) presents 

the general conclusions and the dissertation finishes up with acknowledgements. 

 

Electrophoresis 

Electrophoresis is a very widely used technique for separating both large 

biomolecules (proteins and DNAs) and small organic molecules. Electrophoresis refers to the 

movement of an electrically charged particle under the influence of an electric field. The 

earliest study for the mobility of ions under electrical field and the theories of the 

mechanisms of electrophoresis can be traced back to the 19th century.1 Tiselius developed the 

moving boundary electrophoresis (later known as zone electrophoresis) experiments for 

separation of proteins in free solution, which demonstrated the practical aspects of 

electrophoresis for the first time and later won him the 1948 Nobel prize.2 Severe band 

broadening due to the electrical heating (Joule heating) was observed in early electrophoresis. 

Circulating cooling water (kept at 4°C) was used in Tiselius’s apparatus but it was not 

sufficient to eliminate the heating effect and band broadening. Different supporting media 

including paper,3 starch,4 cellulose membrane,5 agarose,6 and polyacrylamide (PA)7 were 

introduced to limit the diffusion of analyte bands as well as providing sieving matrix as extra 

separation power based on the analytes’ size. Most of the paper or starch based matrixes have 
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been abandoned in favor of agarose and PAA gels because of the improved separation and 

higher loading capacities of later matrixes.  

The movement of particles during electrophoresis is due to the two forces acting on 

them: the electrostatic force (Fe) that accelerates the charged particle, and the frictional force 

(Ff) that counteracts the electrostatic force and decelerates the charged particle (Figure 1): 

EeZEQFe ⋅⋅=⋅= 0  

fF f= − ⋅v  

in which Q is the net effective charge of the ion (Coulombs), E is the electric field 

strength ( 1cmV −⋅ ), Z is the number of charges on the particle, e0 is the elementary charge 

( 191.602 10−× Coulombs), v is the ion velocity ( 1scm −⋅ ) and f is the frictional coefficient 

( 1sg −⋅ ) .  

 

 

 

 

Figure 1.  Forces acting on charged particles during electrophoresis 

For an undeformable spherical particle moving through free solution and friction-

dominant-by-viscosity scenario, the friction coefficient is given by: 

6f rπ η= ⋅ ⋅ ⋅  

in which r is the radius of the particle(cm) and η is the viscosity of the matrix (Pa*s). 

During electrophoresis, a balance between these two counteractive forces is obtained, 

at which point the forces are equal. Therefore, 
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The electrophoretic mobility μep ( 112 Vscm −− ⋅⋅ ) is defined as the velocity per unit 

electric field as: 

 

 

This equation implies that the electrophoretic mobility of each species in a free 

solution depends only on its charge and size. With different charge properties and shapes, 

different kinds of particles or ions will experience different driving and friction forces and 

migrate at different velocities under the applied electric field. This enables the separation of 

different species by electrophoresis in free solution. 

In gel matrixes, many molecules, especially large biopolymers such as DNA or 

proteins, can not be considered as hard spherical particles because they may deform and 

squeeze through the gel network. The migration of such biopolymers can be explained by 

reptation model in functional dependencies rather than exact equations. The electrophoretic 

mobility μep is still defined as Q/f, in which Q is the net charge for DNAs or proteins and f is 

the translational frictional coefficient. According to the structure, the total charge Q of DNAs 

or proteins is proportional to the size N (at proper pH), while the f is proportional to the N2.8 

This overall will give the relation that  

ep 2

1~ N
f N N

μ = =
Q  

This clearly states that for the biopolymers undergoing electrophoresis in reptile 

motion, the electrophoretic mobility is inversely proportional to the molecular size. In other 

words, the larger DNA fragments or proteins will migrate slower than the smaller ones in gel 

electrophoresis. 

Agarose electrophoresis has been the standard method for separation and purification 

of DNA and RNA fragments.9 Among all other electrophoresis techniques, polyacrylamide 

gel electrophoresis (PAGE) and capillary electrophoresis (CE) with various modes are the 

two most widely used methods and each of them will be introduced separately in the 

following parts. 

ep 6
Q Q

E f r
μ

π η
= = =

⋅ ⋅ ⋅
v
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Polyacrylamide Gel Electrophoresis (PAGE) 

PAGE is an indispensable tool for separation and purification of proteins10 and 

DNAs.11 Polyacrylamide gel can be formed by co-polymerization of acrylamide monomers 

with a cross-linking reagent—usually N,N’-methylenebisacrylamide (Bis), as shown in 

Figure 2. The pore size of the gel can be controlled in a reproducible manner by adjusting the 

total arylamide concentration T and the degree of cross-linking C. Generally, higher 

percentage gels (higher T), with smaller pores, are needed to separate smaller molecules and 

vice versa. The precise control of the pore size enables the superior resolving power for 

separation of biomolecules with 0.1% difference in size (i.e., one base difference for a 1kb 

DNA fragment).  

 

Figure 2. Polyacrylamide gel matrix 

Anionic detergent sodium dodecyl sulfate (SDS) is always included for the PAGE of 

proteins for two major reasons:  first, it can disrupt the hydrogen bonds in native proteins to 
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unfold proteins to linear shape; second, the charge of SDS can mask the charges of proteins 

and give the SDS-protein complex a constant net charge per mass unit according to the SDS-

protein binding ratio as 1.4g SDS per g of protein.  Overall a linear relationship between the 

logarithm of the molecular weight and the relative distance of migration can be achieved, and 

this enables the determination of molecular weight for unknown proteins.  

The proteins can also be separated electrophretically on the basis of their relative 

abundance of acidic and basic residues. The isoelectric point (pI) is defined as the pH at 

which the protein has its net charge as zero, so at such pH the protein would have no 

electrophoretic mobility. Different proteins can be separated according to their different pIs 

by isoelectric focusing (IEF). The combination of IEF and SDS-PAGE provided one of the 

most frequently used methods for protein studies as two-dimensional (2-D) SDS-PAGE. As 

the two separation mechanism are orthogonal, very high resolution can be achieved as to 

resolve thousands of protein spots on one single slab gel.10  

After separation with 2-D SDS-PAGE, proteins are usually stained with dyes in order 

to be detected. Coomassie brilliant blue dyes are the most popular protein staining materials 

due to their simplicity and reliability. The sensitivity is limited by the high background to 0.1 

μg protein per spot.12 Silver staining is much more sensitive than coomassie brilliant blue 

staining, with nanogram levels of detection ability.13 Many new dyes and fluorescence 

scanners are now commercially available to facilitate sensitive detection based on 

fluorescence staining. Some fluorescence dyes such as SYPRO Ruby are capable of detecting 

as low as 1 ng protein per band with three orders of magnitude of dynamic range.13 

Radioactive labeling is the most sensitive method, but very long exposure times are needed 

for detection of low amounts of proteins.10 Direct detection of protein spots without staining 

was possible based on both ultra-violet (UV) absorption14 as all proteins absorbs strongly at 

280nm,  and native fluorescence15 as most proteins contain the amino acid residues 

tryptophan, tyrosine, or phenylalanine which will fluoresce under UV irradiation.16 Mass 

spectrometry has also been used to detect proteins separated by a thin polyacrylamide gel.17  

 



www.manaraa.com

6 

 

Capillary Electrophoresis 

It was as early as 1967 when Hjerten18 predicted that the Joule heating can be 

dissipated more efficiently if electrophoresis was carried out in narrow diameter tubes. 

Theoretically peak broadening will be diminished and better separation resolution would be 

possible. The electrophoresis with very high resolution (with excess of 400,000 theoretical 

plates) was first demonstrated by Jorgenson and Lukacs19 in thin glass capillaries with inner 

diameter of 75µm. Since then CE has been increasingly used for both academic researches 

and industrial applications. CE has many advantages over the conventional electrophoresis 

methods, such as extraordinary separation efficiency and resolution, high separation speeds, 

very low sample and buffer consumption, versatile and sensitive detection options, simplicity 

of instrumentation and ease of automation. More and more attentions were attracted to this 

research area in the past two decades. As a proof, there have been steady growth of peer 

reviewed papers using ‘Capillary Electrophoresis’ for the past two decades and the total 

number is over 26,000 by the time this thesis is written.20  

The major driving force in CE is the electroosmotic flow (EOF) other than the 

electrostatic force applied directly on the charged particles. At pH higher than 3 silanol 

groups which cover the inner surface of fused-silica capillary will be negatively charged. 

Cationic ions in the buffer solution will migrate to the negatively charged capillary wall and 

a double-layer will be formed at the wall/solution interface. When electrical potential is 

applied across the capillary, the solvated cations will migrate towards the cathode carrying 

water molecules (from solvation). The cohesive nature of water due to hydrogen bonding will 

cause the whole buffer solution to be dragged to the cathode and this phenomenon is called 

EOF. The EOF can be strong enough to counter the electrostatic attraction of anions to the 

anode, so that all molecules including cations, neutral ones, and anions can migrate toward 

cathode.   

Capillary zone electrophoresis (CZE) is the basic mode of CE as the separation 

matrix is free buffer solution only. Analyte ions are separated into discrete zones based on 

their different apparent mobilities. The separation can be finely tuned by changing the buffer 

condition (buffer composition, ionic strength, pH value, etc.) and running condition (electric 
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field, column dimensions, etc.). CZE has been successfully applied for the separation of 

peptides21 and proteins,22 organic acids23, amino acids and peptides,19, 24 oligosaccharides,25, 

26 and even inorganic ions.27, 28  

CZE cannot separate neutral molecules as they will all migrate at the same mobility 

as EOF drives, nor could it separate those analytes if they have very similar electrophoretic 

mobility. To overcome these problems, Terabe introduced a new mode of CE as micellar 

electrokinetic chromatography (MEKC).29 By adding ionic surfactant to the running buffer, 

the neutral molecules can form charged complexes with surfactant which will facilitate the 

migration under electrical field. More importantly, the micelles act as pseudo-stationary 

phase so that extra separation power is available based on the differential partitioning of 

analytes between micelle phase and aqueous phase. The movement of MEKC is driven by 

electric field as in CZE but this method is in fact a hybrid of electrophoresis and 

chromatography. MEKC renders both super separation efficiency and high separation speed 

for mixture of both ionic and neutral compounds which are not always available for CZE or 

conventional chromatography techniques only. The most important optimization of MEKC 

separation is altering the composition and concentration of surfactant(s) or other host 

molecules. Commonly used ones include SDS,29 crown ethers,30 bile salts,31 cyclodextrins,32 

etc. In chapter three, crown ether C16E8 was used as surfactant additive for separation of 

DNA-estrogen adducts. 

 

Simulation for CE 

Computer based simulation for CE was possible because the behavior of analyte and 

buffer ions inside capillary under well controlled physical and chemical environment can be 

described in detail by three kind of equations: mass conservation, charge conservation or 

electroneutrality of solution, and various reaction equilibria.33-35 In each simulation, the 

appropriate initial and boundary conditions need to be specified, as well as other CE 

conditions. According to each specific scenario, approximations are usually applied in order 

to simplify the calculation to a doable manner by current computers within a reasonable time. 
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By solving sets of nonlinear partial differential equations for mass and charge conservation 

and algebraic equilibrium equations, the separation of analytes can be simulated with many 

detailed information such as peak shape and distortion.36 Simulation can also be used to 

optimize separation conditions such as which buffer system or injection process to choose, 

and to explain unusual phenomena such as system peaks.37, 38 Many CE simulations are one-

dimensional (1-D) as they focus on the longitudinal distribution of analytes only but totally 

ignore the wall adsorption by assuming the constant radial distribution. The assumption is not 

valid when analytes absorb to the capillary wall. Pseudo two-dimensional (2-D) model was 

proposed by Ermakov et al. in which the wall adsorption was considered for a very thin 

adsorbing layer and radial distribution in the rest part was still considered as constant.39 A 

true 2-D model was developed by Gas et al. to simulate the  peak shapes and variances due to 

the adsorption.40 In chapter 4, a real 2-D model was used to predict the adsorption of R-

phycoerythrin (RPE) protein on the fused silica capillary wall. Adsorption isotherms were 

constructed from simulation and were validated by both CE experiments and direct 

observation of the RPE molecules on fused silica surface by single molecule spectroscopy. 

 

Mass Spectrometry 

Mass spectrometry (MS) has been an indispensable tool in chemistry, biochemistry, 

pharmacy, medicine, environment, and geology.41 The basic principle of this technique is to 

generate ions from analytes (ion sources), then to separate the ions usually by the different 

mass to charge ratio (m/z) of ions (mass analyzer), and to accurately detect the number of 

ions at each m/z (detector). MS can be used to detect both small molecules such as inorganic 

elements or small organic compounds, and large molecules such as proteins and DNAs. It is 

commonly used to identify unknown compounds by the mass of the molecules as well as the 

isotopic composition of elements, to elucidate the structure of a compound by observing its 

fragmentation, and to study the fundamentals of gas phase ion chemistry as well as other 

physical, chemical, and biological properties of molecules.  

One reason for the big success of MS is the versatile options of instrumentation for 

different applications. For example, different mass analyzers including magnetic sectors,42 
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time of flight (TOF),43 quadrupole,44 ion traps (IT)45, 46 and Fourier transform ion cyclotron 

resonance (FT-ICR)47 were utilized as each of them has their own merits. During the past 

century, various ion sources have been developed: from historic but still widely used ones as 

electron ionization (EI),48 field ionization (FI)49 and chemical ionization (CI)50 (before 

1950s’); to the newer ones as fast atom bombardment ionization (FAB),51 electrospray 

ionization (ESI)52, laser desorption ionization (LDI)53 and matrix assisted laser desorption 

ionization (MALDI),54(1960-1990s’); and to the most recent ambient ionization methods 

including desorption electrospray ionization (DESI),55 direct analysis in real time (DART)56 

and atmospheric solids analysis probe (ASAP),57 (2004-2005). Multi Nobel prizes have been 

awarded for MS related researches include the 1989 physics award for the development of 

ion trap, and the 2002 chemistry award for the impact to the biological macromolecules study 

with two soft ionization methods as ESI and soft LDI. In fact, ESI and MALDI are the two 

most widely used ionization methods for biomolecules nowadays.  

 

MALDI MS and Small Molecule MALDI 

Since the introduction in late 1980s, MALDI has grown exponentially as an 

indispensable tool used in chemistry and bio-related sciences.54 The big success of MALDI 

comes from its soft ionization characteristic, in which large molecules could be preserved; 

and the simplified spectra as mostly singly charged species are generated by MALDI.58 

Besides proteins59 and synthetic polymers,60 MALDI has also been very successful in 

detecting lipids,61 carbohydrates and glycans,62, 63 and nucleic acids and DNAs.64 In order to 

be detected by MALDI, analytes are mixed with matrix by so-called cocrystallization process. 

Matrix molecules are usually small organic acids and have strong absorption at the laser 

wavelength, such as α-cyano-4-hydroxycinnamic acid (CHCA)65 or 2,5-dihydroxybenzoic 

acid (DHB).66 Upon the laser irradiation, matrix molecules will strongly absorb the laser 

energy and assist the desorption and ionization of analytes by energy and charge transfer. 

The real mechanisms which lead to the final ionization of analytes are poorly understood as 

yet, though models have been proposed. One model assumes the analyte molecules as 

incorporated in the matrix crystals are neutral.54 After the matrix molecules are photoionzed 



www.manaraa.com

10 

 

the charge will be transferred to analyte molecules. Recent “lucky survivor” model62 assumes 

the analytes are incorporated into matrixes as charged species in the beginning, but only 

those ‘”lucky” ones will remain charged and be detected while others will be re-neutralized 

within the desorbed clusters of matrix and analyte mixture. 

It was recognized very early that the analytes should be diluted to tens of thousand 

times by matrix molecules in order to get good signals.67  This excess amount of matrix 

molecules will be ionized and give very strong background peaks upon laser irradiation. As 

the conventional MALDI matrixes are usually small organic acids with molecular weight less 

than 500Da, the small m/z region of MALDI mass spectra (<500Da) are always omitted for 

detection of large analytes in order to prevent detector saturation and space charge effect. 

The presence of such high matrix peaks would also severely suppress the analyte peaks 

which are in the same region. For these reasons the application of MALDI to small molecules 

has lagged far behind the application to large ones. To overcome this problem, various 

approaches have been introduced such as to use organic matrix with a larger molecular 

weight (e.g., porphyrin with molecular weight of 974.6);68 to use different inorganic matrixes 

including metal powders and metal oxides to eliminate matrix peaks;69-72 and to skip matrix 

as in desorption ionization on silicon (DIOS).73, 74 Several carbon based matrixes (colloidal 

graphite, fullerol, and acidic fullerene) were successfully developed in our lab for detection 

of small molecules. Detailed discussion can be found in chapter five and six. 

 

Imaging Mass Spectrometry 

Imaging MS as it is called, allows one to visualize the 2-D relative concentration 

profiles of molecules on the surface of biological samples by creating images with a set of 

mass spectra acquired stepwise with defined lateral assignment for each spectrum. One big 

advantage of imaging MS over conventional molecular imaging methods is that no labeling 

is needed and many kinds of molecules can be detected simultaneously.75 

Various MS techniques have been used for imaging purposes, include secondary ion 

mass spectrometry (SIMS),76-79 MALDI,80-84 and DESI.85 Decades ago SIMS was used as an 
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imaging tool for detecting inorganic impurities on silicon surfaces in semiconductor 

industries.77 Nowadays SIMS can be used to detect both inorganic elements76 and small 

organic molecules.76, 78  It also provides the best spatial resolution (nm level) among all the 

three imaging MS methods. The diverse choices of lasers and matrixes make MALDI MS 

suitable for fast, simultaneous and high-throughput imaging of both small molecules as lipids 

and peptides and large molecules as proteins from various biological samples.80-84 The spatial 

resolution of MALDI IMS is in between that of SIMS and DESI IMS, usually ranging from 

80-200 µm.86 DESI requires the least sample preparation and allows true in situ measurement 

with the simplest instrumentation, but it is destructive to samples and the resolution is worse 

than other two methods.85 

The general process of MALDI imaging can be shown as in Figure 3. First, a thin 

sample slice (normally cut by cryosectioning) is placed on a MALDI plate, and the plate is  

 

 

 

 

 

 

 

 

 

 

Figure 3. General procedure of MALDI-imaging mass spectrometry75 
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then sprayed uniformly with appropriate matrix. Mass spectra are collected at each of the 

rastering points of laser beam for a pre-selected region. Special designed imaging software is 

used to process the collected  mass spectra and  to generate 2-D optical images. 

Due to the limitation of conventional MALDI as discussed previously, it is a big 

challenge to do MALDI imaging MS for small molecules. With graphite matrix developed in 

our lab, imaging MS of small organic acids, flavonoids and oligosaccharides were 

demonstrated with fruit samples in Chapter five.  

 

Structural Identification of Carbohydrates 

Carbohydrates are very important biomolecules in nature as they serve crucial 

structural and functional roles in almost all living organisms.87 Besides functioning as energy 

storage for many biological pathways and structural components for cells, carbohydrates and 

their derivatives also play major roles in molecular recognition and signaling.87 The very 

diverse biological activities of carbohydrates depend on their detailed structures, which 

include the composition of monosaccharide residues, positions of inter-residue linkages and 

branches, and the anomeric configuration. In many cases it is a must to find the exact 

structure of carbohydrates, as isomers with very similar structures may function very 

differently. After the proteins can be routinely sequenced and human genome is essentially 

complete, more and more ambitious scientists participated in carbohydrates sequencing.88-90 

Many traditional biochemistry methods for carbohydrate sequencing based on the use of 

different enzymes with various specificities that oligosaccharides can be cleaved at one type 

of linkage or position but not the others. Those methods required a lot of sample preparation 

and separation thus were very time consuming.91 NMR was frequently used to determine the 

structure of oligosaccharides but pure individual component was needed.92 Thanks to the 

invention of two soft ionization methods as MALDI59 and ESI,52 carbohydrates can be easily 

analyzed with MS techniques. Tandem MS can provide detailed structural information of 

carbohydrates from the fragmentation profiles.93-98 In the past decades, tandem MS was 

successfully used to identify the derivatization type and position, to elucidate the branching 
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sites, and to distinguish different linkage positions.93-95 The anomeric configuration (α or β) 

was also distinguished for four pairs of disaccharide isomers recently.99 However, one 

fundamental question for carbohydrate sequencing, as to identify the different 

monosaccharide residues as the building blocks of oligosaccharides, has not been done. 

Chapter six was devoted to address this problem as differentiating the different 

monosaccharide residues of disaccharides by using tandem MS and discriminant data 

analysis.  
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CHAPTER 2. ULTRA-SENSITIVE NATIVE FLUORESCENCE 
DETECTION OF PROTEINS WITH MINIATURIZED 

POLYACRYLAMIDE GEL ELECTROPHORESIS BY LASER SIDE-
ENTRY EXCITATION 

A paper published in Electrophoresis* 

Hui Zhang and Edward S. Yeung 

 

Abstract 

Direct detection of separated proteins inside polyacrylamide gels has many 

advantages compared with staining methods. Ultra-sensitive native fluorescence detection of 

proteins with miniaturized one- and two-dimensional polyacrylamide gel electrophoresis was 

achieved with laser side-entry excitation. The detection limit for R-phycoerythrin protein 

spots in 1-D SDS-PAGE with 532 nm excitation was as low as 15 fg, which corresponds to 

only 40 thousand molecules. The average detection limit of six standard native proteins was 

5 pg per band with 275 nm excitation. The dynamic range spanned more than 3 orders of 

magnitude. By using the same detection setup, approximately 150 protein spots from 30 ng 

total Escherichia coli extraction were detected on a 0.8 cm × 1 cm gel in two-dimensional 

separation. The significant improvement in sensitivity for laser side-entry excitation comes 

from higher excitation power and lower background level compared with other excitation 

modes. 

 

___________________________________________________________________________ 

* Reprint with permission from Electrophoresis 2006, 27(18), 3609-3618. 

Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 
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 Introduction 

Gel electrophoresis is one of the most frequently used techniques for the separation of 

complex biopolymer mixtures such as DNAs and proteins.1-3 For decades sodium dodecyl-

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) has been the core analytical tool for 

the separation of protein molecules, estimation of molecular mass and assessment of sample 

purity.4 Since two-dimensional (2-D) electrophoresis was introduced by O’Farrell,5 the 

method has not changed significantly. First proteins are separated according to their 

isoelectric points (pI) in the first dimension by isoelectric focusing (IEF). Disulfide bonds in 

the proteins are then cleaved by thiol reducing agents, the protein subunits are dissociated 

and the polypeptide chains are saturated with SDS. The resulting complexes with similar 

charge-to-mass ratios are then separated by their molecular sizes in the second dimension.6  

Sensitive detection of the separated proteins is always a challenge in SDS-PAGE. 

Coomassie Brilliant Blue dyes are the most popular protein staining materials due to 

simplicity and reliability. The sensitivity is limited by the high background to 0.1 μg per 

protein spot.6 Silver staining is much more sensitive than Coomassie Brilliant Blue staining, 

with nanogram levels of detection ability.7 However, it suffers from some inherent 

drawbacks such as low dynamic range, tedious staining/destaining steps, and the use of toxic 

chemicals.6 Many new dyes and fluorescence scanners are now commercially available to 

facilitate sensitive detection based on fluorescence staining. Some fluorescence dyes such as 

SYPRO Ruby are capable of detecting as low as 1 ng protein per band with three orders of 

magnitude of dynamic range.7 In all cases, high background is an intrinsic shortcoming and a 

subsequent destaining step is required. Radioactive labeling (with 14C, 3H, etc.) is the most 

sensitive method, but very long exposure times are needed for detection of low amounts of 

proteins.5 Moreover, samples are limited to those which could be incorporated with radio-

active nuclei,6 and environmental hazards are always an issue.  

In proteomics, gels are often analyzed by mass spectrometry after separation.2 

Unfortunately, the coupling of gel separation and mass spectrometry suffers from the 

presence of dyes or fluorescence labels required to first visualize the proteins.8, 9 Direct 

detection methods are more desirable than staining methods as intact proteins are preserved. 
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Direct detection of protein spots from a thin polyacrylamide gel by mass spectrometry was 

demonstrated at the 10-ng range.10 However, mass spectrometry in proteomics is mainly used 

for analyzing peptide fragments digested from individual protein spots, instead of 

characterizing all proteins separated in a gel.  

Among the 20 common amino acids, tryptophan, phenylalanine, and tyrosine have 

significant UV absorption between 250 nm and 300 nm. Proteins that contain tryptophan or 

tyrosine groups fluoresce between 300 nm and 400 nm when excited into these absorption 

bands.11 Database search performed by Roegener et al. showed that more than 99% of the 1 

million proteins with molecular mass larger than 10 kD have at least one amino acid residue 

of tryptophan or tyrosine.12 This makes direct detection methods based on both UV 

absorption and native fluorescence of proteins possible.11-16 For example, Yamamoto et al. 

detected microgram-level protein bands by measuring the 280 nm UV absorbance of proteins 

in polyacrylamide (PAA) gels.14 Roegener et al. expanded a frequency-tripled Ti:Sapphire 

laser (operated at 280 nm) and excited PAA gels from the top for direct fluorescence 

detection of proteins.12 Detection limits of 5-10 ng for various protein bands were obtained 

with 35 mW/cm2 excitation power. Sluszny et al. coupled micro-electrophoresis with native 

fluorescence detection with top excitation by a UV lamp.16 The detection limit achieved in 

that project was as low as 40 pg per protein spot.  

Side-entry excitation has been suggested as a more efficient way for DNA detection 

in slab gels than top excitation.17 In this work, the sensitivity of protein detection by native 

fluorescence was improved to the picogram level with 275 nm laser side-entry excitation. 

Furthermore, femtogram-level detection limit was achieved for R-phycoerythrin (RPE), B-

phycoerythrin (BPE) and Alexa Fluor-532 labeled proteins by 532 nm Nd:YAG laser side-

entry excitation.  

Materials and Methods  

Chemicals  

IEF and SDS-PAGE: Dry IEF PhastGel, DTT, Urea, and CHAPS were purchased 

from Amersham Biosciences (Piscataway, NJ). Acrylamide, bisacrylamide, bromophenol 
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blue, 1.5 M Tris-HCl solution (pH 8.8) and 0.5 M Tris-HCl solution (pH 6.8) were purchased 

from Bio-Rad (Hercules, CA). SDS, Tris, glycine, TEMED, β-mercaptoethanol (5% v/v) 

ammonium persulfate and glycerol were obtained from Sigma (St. Louis, MO). Agarose M 

was purchased from Amersham. The sample buffer (Laemmli buffer) contained 62.5 mM 

Tris-HCl at a pH of 6.8, 25% glycerol, 2% SDS and 0.01% bromophenol blue. The gel 

running buffer contained 25 mM Tris, pH 8.3, 192 mM glycine, and 0.1% SDS. All water 

was obtained from a MilliQ water purification system (Millipore, Billerica, MA).  

Protein samples: Alexa Fluor-532 protein labeling kit, RPE and BPE were purchased 

from Invitrogen-Molecular Probes (Carlsbad, CA). Protein mixtures containing 2 µg/μl each 

of six native proteins lysozyme (MW 14,400), trypsin inhibitor (MW 21,500), carbonic 

anhydrase (MW 31,000), ovalbumin (MW 45,000), serum albumin (MW 66,200) and 

phosphorylase b (MW 97,000) were purchased from Bio-Rad. Standard proteins of bovine 

serum albumin (BSA, MW 66,000) and conalbumin (MW 77,000) were purchased from 

Sigma. Proteins were dissolved to a final concentration of 2 mg/ml and stored at –20 ˚C until 

use. Escherichia coli (E. coli) protein sample used for 2-D separations was purchased from 

Bio-Rad. 

 

Gel Electrophoresis  

Gel Cassette: Quartz gel cassettes for both 1-D and 2-D electrophoresis (Fig. 1) were 

manufactured by NSG Precision Cells (Farmingdale, NY). The cassettes were 15 mm long 

rectangular tubes with 15 mm × 1 mm inner cross section. All surfaces were flat and 

polished. For 1-D SDS-PAGE experiments, six 0.5 mm holes were drilled in one quartz gel 

cassette by CiDRA Corporation (Wallingford, CT). The six holes were 1 mm away from the 

edge of top plate and the separation between holes was 2.2 mm. 

Gel Composition: For both 1-D and 2-D electrophoresis, the stacking gel was 

composed of 4% T and 3.3% C at a pH of 6.8 and the resolving gel was 12% T and 3.3% C 

at a pH of 8.8, except for the experiments with 532 nm laser excitation in which the resolving 

gel concentration was 8%T and 3.3% C at a pH of 8.8. 
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Gels for 1-D SDS PAGE were cast as follows. First, parafilm was stretched to cover 

the bottom of the quartz gel cassette in order to prevent leaking. Monomer solution of the 

resolving gel was poured 3 mm-to-top into the sealed gel cassette. Isopropanol was added on 

top of the resolving gel solution to make the gel surface flat. The gel was polymerized for 30 

min in the dark. Then six fused-silica capillaries (1.5 cm long, 360 μm outer diameter and 75 

μm inner diameter, Polymicro Technologies, Phoenix, AZ) were inserted through each of the 

six drilled holes to about 0.2 mm away from the bottom plate of gel cassette. An aluminium 

holder with six holes that were designed to match those in the quartz gel cassette was used to 

hold the capillaries and to keep them straight. The stacking gel was then poured into the gel 

cassette and polymerised for 30 min. The capillaries were then pulled out and injection wells 

were made with dimensions of 0.8 mm in depth and 0.4 mm in diameter. Prior to injection 

polymerized gels were photobleached 10 min by a 254 nm mercury lamp (Spectroline, 

Westbury, NY). Gels for 2-D separations were cast the same way as those for 1-D separation 

except that no injection wells were made.  

Sample Loading and Electrophoresis of 1-D SDS-PAGE: BSA and conalbumin 

protein were labeled with Alexa Fluor-532 fluorescence dye according to manufacturer’s 

instruction. The two labeled proteins were then mixed with RPE and BPE and diluted to the 

desired concentration with H2O. Such a mixture was ready for sample loading in experiments 

with 532 nm laser excitation. Protein mixtures used in experiments with 275 nm laser 

excitation were prepared following Laemmli’s protocol: pre-mixed protein standard solution 

from Bio-Rad was diluted to the designated concentration with H2O. Then, protein mixtures 

were mixed with sample buffer (final concentration: 50%) and beta-mercaptoethanol (final 

concentration: 5%) and heated to 100 ˚C for 10 min. Samples were then cooled down and 

were ready for injection. The micro-injector was made by connecting a short fused-silica 

capillary (2 cm long, 150 μm outer diameter and 50 μm inner diameter, Polymicro) with a 

0.5 μl syringe (Hamilton Co., Reno, NV), as shown in Fig. 2. A protein solution of 0.08 μl 

was injected into each injection well made as described previously. Gels were then put inside 

the running chamber. Melted agarose solution (0.5%, in H2O) was added in between the gel 

cassette and running chamber to prevent current leakage. Electrophoresis was carried out 

horizontally at a constant voltage of 200 volts for 5 min. The whole quartz gel cassette with 
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the separated proteins inside was taken out from the running chamber, rinsed with water and 

dried with air. The gel was imaged inside the quartz gel cassette.  

2-D SDS-PAGE Separations: Isoelectric focusing was performed according to the 

manufacturer’s instructions. Dry sample proteins extracted from E. coli were dissolved in 8 

M urea, 2 mM DTT and 2% CHAPS and stored at –70 ˚C until use. Dry IEF gels were cut 

into 12 mm × 1 mm strips. The IEF strip was soaked 1 h with rehydration solution contained 

6 M urea, 2% CHAPS, 0.3% (w/v) DTT and 0.002% bromophenol blue. Various amounts of 

E. coli protein, ranging from 30 ng-2 μg were added to the rehydration buffer solution. After 

the rehydration step high voltage was applied across the 12 mm gel with the following 

protocol: 40 V 10 min, 80 V 5 min, 150 V 5 min, 200 V 30 min and 300 V 20 min. 

Subsequently, IEF strips were equilibrated for 15 min in a solution containing 50 mM Tris-

HCl (pH 8.8), 6 M urea, 30% glycerol, 2% SDS, 1% DTT and 0.002% bromophenol blue. 

The second-dimension separation (i.e., SDS-PAGE) was performed similarly to the 1-D 

experiments after the IEF strips were delivered on top of the stacking gels. The gels were 

then rinsed and imaged.  

 

Fluorescence Detection  

The detection set-up is presented in Fig. 3. The gel inside the quartz cassette was 

placed horizontally on a holder. Either the 275 nm laser line isolated from an argon-ion laser 

(Model 2045, Spectra-Physics, Mountain View, CA) or the 532 nm Nd:YAG laser (Uniphase, 

San Jose, CA) was used to excite the gels from the side. The laser beam was expanded 

horizontally by the first cylindrical lens (40.0 mm × 25.4 mm, f = 3 cm, CVI Laser, 

Albuquerque, NM) and then focused vertically by the second cylindrical lens (25.4 mm in 

diameter, f = 15 cm, CVI Laser) into a thin sheet. The dimensions of the laser beam at the gel 

were approximately 15 mm wide and 300 μm thick. The laser passed through the gel 

perpendicular to the side of the gel cassette to ensure maximum transmittance of light 

through the gel. The thin laser beam was prevented from hitting the top or the bottom plate of 

quartz gel cassette.  
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UV Fluorescence Detection: For experiments with UV laser, the 275 nm laser line 

was isolated from other laser lines and plasma emission by a prism. All UV mirrors and UV 

cylindrical lenses were purchased from CVI laser. The average irradiation power measured at 

the side entrance of the gel was 60-120 mW/cm2. In order to reduce background light, the 

set-up was contained in a closed box. The irradiated gel was imaged by a 105 mm UV 

camera lens (f = 4.5, Nikon, Japan) onto a back illuminated, 16 bit CCD camera (TE/CCD-

512-TKB, Princeton Instruments, Princeton, NJ), which had an approximate quantum 

efficiency of 40% for UV light. A long-pass color glass filter (WG-305, Schott Glass, 

Duryea, PA) and a band-pass filter (330WB80, Omega Filters, Brattleboro, VT) were used to 

select the fluorescence of native proteins. The exposure of the CCD was set at 10-60 s 

according to the fluorescence intensity emitted from the gels. 

Visible Fluorescence Detection: Experiments with 532 nm laser side-entry 

excitation were based on a similar detection setup as shown in Fig. 3 except all the optics 

were designed for visible light. All the mirrors were Nd:YAG High Energy Laser Mirrors 

(CVI). Two cylindrical lenses had the same specifications as those for the UV experiments 

except that no UV coating was applied. The average irradiation power measured at the side 

entrance of the gel was 50-200 mW/cm2. The irradiated gel was imaged by a 28 mm Nikkor 

camera lens (AF28/1.4D). A 532 holographic notch filter (Kaiser Optical Systems, Ann 

Arbor, MI) and a band pass filter (580WB80, Omega Filters) were used to select the protein 

fluorescence. The CCD exposure was set at 1-60 s according to the fluorescence intensity 

emitted from the gels. Laser top-entry excitation was also carried out by expanding the laser 

beam with a symmetric convex lens (5 mm diameter, f = 4.5mm, Melles Griot, Rochester, 

NY). The enlarged laser beam was then introduced onto the gel cassette from the top at an 

excitation power of about 15 mW/cm2. The same filters and camera lens as in the 

experiments with 532 nm side-entry excitation were used for imaging. 

 

Data Processing  

Image analysis was performed with the Winview/32 (Princeton Instruments) and 

Pdquest software (Bio-Rad). Quantification was based on the integrated fluorescence 
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intensity of each protein spot after background subtraction and normalization to the 

excitation power.  

 

Safety concerns  

Care should be taken when handling acrylamide monomers as they are toxic. 

Appropriate protective eyewear is required for working with both lasers used in this research.  

 

Results and Discussion 

General Concern and Optimization of System  

Injection: Compared with conventional gels, miniaturized gels can provide higher 

speeds of separation, higher sensitivity and smaller quantities of reagents consumed 16. 

However sample loading for miniaturized gels is quite challenging. In normal SDS-PAGE 

experiments, injection wells for sample introduction are in the order of several mm and 

several tens of µL sample are injected into each well. The miniaturized gels here are only 15 

mm × 15 mm × 1 mm. Various approaches have been suggested for sample delivery into 

ultra-thin or miniaturized slab gels. For example, Stein et al. 18 fabricated 0.1 μl injection 

wells with a sharp comb made by spark erosion of a razor blade. Zheng et al. 19 applied a 

specially designed ceramic comb to form rectangularly shaped wells, which enabled the use 

of a regular micropipette for sample delivery. Alternatively, Liu and Sweedler 20 and Hietpas 

et al. 21 used a capillary to deliver samples electrokinetically into ultra-thin gels. Our group 

developed a method to cast small injection wells by immersing a capillary tip inside the gel 

during polymerization. Then, 0.1 μl of sample solution was delivered through a capillary 

splitter assembly.16 Here we simplify the injection process by replacing the capillary splitter 

with a home-made micro-injector. Precise liquid deliveries in the range of 20-100 nL were 

achieved.  

Optimization of Laser Beam: Various excitation sources could be utilized for the 

detection of biopolymers separated in gels, including lamps, lasers, light emitting diodes, etc. 
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Among them lasers bear many advantages due to high excitation power, low divergence and 

monochromatic characteristics. Lasers have been applied to excite both native proteins and 

labeled proteins in gels.12, 22 In both cases lasers were introduced from the top and did not 

provide comparable sensitivity as classic staining methods. Also, the gel image had to be 

assembled from several sequential images because only partial irradiation of the whole gel 

was achieved due to difficulties in focusing and concerns about excitation power loss. For the 

miniaturized gels, the laser beam could be expanded easily to excite the whole gel without 

significant power decrease. Introducing the laser beam by side entry has been applied to 

DNA separations,17 but no analogous protein detection has been reported before.  

Ideally the laser beam should be able to excite all the proteins inside the entire gel 

area efficiently and it should not hit the top or bottom plates of the gel cassette to give high 

background. So the laser beam was expanded horizontally by the first cylindrical lens to 

match the gel width, as shown in Fig. 3. Meanwhile the distance between the gel and the first 

cylindrical lens should not be too far in order to prevent over-expansion and excitation power 

loss. The expanded laser beam had to be focused vertically to fit the 1 mm thick gel. Two 

parameters are involved, namely a thin beam of 2w0 (Gaussian beam radius) at the focal 

plane and a large depth of focus (DOF), which represents the distance in the direction of 

propagation where the laser beam thickness is <  2  times of the beam waist. Compromise 

was made since both could not be achieved simultaneously. With the optics used in our 

experimental setup, the laser beam was maintained to less than 0.3 mm in thickness for at 

least 2 cm long distance. 

Absorption by Gel Matrix and Fluorescence Background: One big issue for side-

entry excitation is the attenuation of the laser beam as it traveled through the gel matrix. 

Considering the low amount of protein loading (pg to ng levels), the laser excitation power 

was not affected much as a result of absorption by proteins. Both monomers of acrylamide 

and PAA gels are totally transparent of 532 nm. Hence proteins loaded in different lanes 

experience the same excitation power in experiments with 532 nm laser excitation. For 

experiments at 275 nm, polyacrylamide became non-transparent for UV light. Acrylamide 

monomer also has strong absorption below 300 nm due to the C=C double bonds. During 



www.manaraa.com

29 

 

polymerization, absorbance in the 260-280 nm region decreases gradually as the polymer 

chain increases. However, even the 12% polyacrylamide gel polymerized from the best 

acrylamide monomer we could obtain commercially still had absorption of about 0.45 for 1 

cm beam path at 275 nm. Normalization with respect to the laser power loss is thus 

necessary, as described in detail later. 

Similarly, PAA gel matrix has negligible fluorescence background under 532 nm 

excitation, but the gel matrix fluoresces considerably under 275 nm excitation. It was 

observed that brief photobleaching under a 254 nm mercury lamp could decrease the 

fluorescence background of the gel matrix to a moderate level. The residual fluorescence 

background is mostly in the 300-360 nm region, which falls in the same region as the native 

fluorescence of proteins. So there are no suitable spatial filters to selectively block such 

background light. Fortunately, the excitation power provided by side-entry configuration was 

so high that as low as 20 pg per protein band could still be detected over fairly high 

background levels, as presented vide infra. 

 

 Visible Fluorescence Detection in 1-D SDS-PAGE with 532 nm Laser Side Entry 

Excitation 

1-D SDS-PAGE experiments with visible fluorescence were carried out to 

demonstrate the superior sensitivity provided by laser side-entry excitation. Phycobiliproteins 

like R-phycoerythrin (RPE) and B-phycoerythrin (BPE) found in cyanobacteria and several 

groups of eucaryotic algae 23 have strong visible fluorescence in the 550-650 nm region when 

excited by 450-600 nm visible light. Two native proteins (BSA and conalbumin) were 

labeled with Alexa Fluor-532 dye to give visible fluorescence at similar wavelengths. 

Labeled proteins were mixed with RPE and BPE, and then diluted to the desired 

concentration and injected into each lane. As shown in Fig. 4A, all four protein spots were 

easily visible in the 0.8 pg lane. Signal-to-noise (S/N) ratio of 200 fg spots of labeled BSA, 

labeled conalbumin, BPE and RPE were 15, 3, 20 and 40, respectively. The calculated 

detection limit for each of the four proteins were 40 fg, 200 fg, 30 fg and 15 fg at S/N = 3, 
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which correspond to only 100, 500, 80, 40 thousand of protein molecules each. It is worth 

mentioning that the concentration of the two labeled proteins was calculated by assuming 

100% labeling and recovery efficiency from the labeling reaction, which in practice could be 

much lower. For comparison, laser top-entry excitation was also carried out after beam 

expansion by a convex lens. Protein spots below the 1 pg level were not visible, as shown in 

Fig. 4B. With the same detection setup as employed by Sluszny et al.,16 530 nm-550 nm light 

was also selected from a 500 W Hg (Xe) lamp (Oriel, Stamford, CT) and utilized to excite 

the gels from the top. The sensitivity achieved was even lower than laser top excitation, 

presumably due to the lower excitation power.  

The excitation power density in laser side-entry excitation was much higher than top 

entry excitation, as the laser was focused more tightly. A careful comparison between the two 

gel images in Fig. 4 also indicates that after normalization with respect to the excitation 

power, the side-entry configuration provides lower background levels than the top-entry 

configuration. A major part of background light in the gel images came from reflection and 

scattering from the gel surface. By focusing the laser beam into a thin sheet and applying 

side-entry excitation, such reflection and scattering were decreased effectively. The noise 

level, which was dominated by the fluctuation of background light in this case, was 

decreased as well. This combination led to lower detection limits for side-entry excitation.  

 

Calibration for Heterogeneous Excitation Power 

PAA matrix has negligible absorption at 532 nm so that excitation power is 

homogeneous across the gel. However, it has considerable absorption at 275 nm. As a result, 

excitation power for different locations of the gel decreases exponentially as the laser travels 

through it, as is clearly shown in Fig 5A. By fitting the background level to an exponential 

decay model, absorption by the PAA gel matrix could be accounted for. This result agreed 

well with measurements made with a spectrometer. Control experiments were carried out by 

loading trypsin inhibitor protein into each lane as internal standards. The integrated 

fluorescence signal of each protein spot was plotted as shaded columns in the histogram of 
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Fig. 5B. Clearly, the fluorescence intensity of protein spots had the same decreasing trend as 

the background and could be fitted to the same exponential decay model. By assigning 

different correction factors to different pixels in the raw gel images, excitation power at 

different locations of the gel could thus be calibrated. The process was further simplified by 

assigning one correction factor for each protein spot. Such calibration for the control 

experiments proved to be valid and effective, as the blank columns show in Fig. 5B. All the 

1-D SDS-PAGE gels with 275 nm laser side-entry excitation were calibrated by this means.  

 

Native Fluorescence Detection of 1-D SDS-PAGE with 275 nm Laser Side-Entry 

Excitation 

The one-dimensional SDS-PAGE separation of the six standard proteins was 

presented in Fig. 6. In order to prevent saturation of the CCD, gels with higher protein 

loading were imaged with shorter exposure times than those with lower loading. Fig. 6 

emphasizes the superior detection capabilities of native fluorescence detection with laser 

side-entry excitation compared to those of standard staining methods or other fluorescence 

detection methods. All six protein spots (20 pg each) could be clearly visualized in Fig. 6B. 

For example, the S/N of the 20 pg carbonic anhydrase spot was about 18, indicating a 

detection limit of less than 4 pg (S/N = 3). All six proteins gave average detection limits of 

about 5 pg, which is about 4 and 2 orders of magnitude better than those of the coomassie 

stain and silver staining, respectively. 

The detection limit for proteins with UV fluorescence is considerably higher than 

those with visible fluorescence. The major difference is that the very low background level in 

visible fluorescence detection is not achievable with UV laser excitation. The PAA gel 

matrix has high fluorescence background under 275 nm excitation. In addition, the filters are 

much less effective in resolving protein fluorescence from background compared to those 

used in experiments with 532 nm laser excitation.  

Fig. 7 presents the calibration plots for the 1-D SDS-PAGE separations. The high-

range data points of 0.8 ng-16 ng correspond to Fig. 6A, and the low-range data points of 20 
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pg-0.8 ng correspond to Fig. 6B. The fluorescence signal of each protein spot was calculated 

by subtracting the adjacent background level from the total signal. Calibration was applied to 

correct for the attenuation of excitation laser power, as discussed previously. The 0.8 ng lane 

is present in both high-range gels and low-range gels, so proteins in this lane were used as 

internal standards to account for the different exposure times. Fig. 7 shows that the system 

exhibits a large and linear dynamic range, from the pg region to an upper limit of 16 ng. This 

feature is also better than the corresponding dynamic range obtained by silver staining and 

coomassie dyes.6, 24 

 

Native Fluorescence Detection of 2-D SDS-PAGE with 275 nm Laser Side-Entry 

Excitation  

Previous work of our group demonstrated the feasibility of miniature gels to separate 

complex protein mixtures.16 2 cm × 1.5 cm miniaturized gels provided similar resolution as 

commercial mini-gel (7 cm × 7 cm) but with better sensitivity than conventional staining 

methods. About 115 protein spots were detected with 0.1 μg protein loading when the gel 

was irradiated by UV lamp via top-entry excitation.16 Fig. 8 represents the 2-D separation of 

E. coli protein extracts with 1 μg, 0.25 μg, and 30 ng loading. Images in the 2-D experiments 

were not calibrated for laser excitation power as in 1-D experiments, but there is no reason 

that such calibration could not be done in the same way for quantitative analysis. Within the 

10 mm × 8 mm gel area, the number of protein spots detected with the Pdquest software were 

280, 280, 250, 210 and 150 for 1 μg, 0.25 μg, 0.125 μg (data not shown), 65 ng (data not 

shown) and 30 ng of protein loading, respectively. Protein loading was calculated by 

multiplying the protein concentration in the rehydration solution by the volume of solution 

taken up by the dry IEF gel, which was about 6 μl for 12 mm × 1 mm gel strips. These results 

underscore the high sensitivity of native protein fluorescence detection with laser side-entry 

excitation.  
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Conclusions 

Native fluorescence detection of separated protein spots in gel electrophoresis by 

side-entry excitation has many advantages over staining methods, such as high speed, high 

sensitivity, elimination of tedious staining/destaining or labeling steps, and compatibility 

with subsequent mass spectrometric analysis. The method was applied to both one and two-

dimensional separations of native proteins and Alexa Fluor-532 labeled proteins. In 1-D 

SDS-PAGE, a simple micro-injector was designed for precise delivery of less than 0.1 μl of 

sample solution. Reproducible results were obtained for various protein loadings. The 

detection limit for 6 native proteins and two Alexa Fluor-532 labeled proteins were as low as 

15 fg. E. coli protein extracts were separated by two-dimensional electrophoresis. On a 10 

mm × 8 mm area, as many as 280 and 150 protein spots were detected for 1 μg and 30 ng 

protein loading, respectively.  

When compared with other excitation modes, including lamp top-entry excitation and 

laser top-entry excitation, laser side-entry excitation provided higher excitation power and 

lower background levels. As a result, significant improvements in sensitivity were achieved. 

Although manual operation of the system is presented here, automation of the 2-D separation 

was presented recently by Xu et al.25 Throughput will be improved as well as sensitivity, if 

such automated separation is coupled to this fluorescence detection method with laser side-

entry excitation. 
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Figure Captions 

Figure 1. Gel running chamber. The gel running chamber has dimensions of 50 mm × 

65 mm. Volume of the buffer containers was 2 mL each. Inset: quartz gel cassette for 1-D 

SDS-PAGE. Dimensions of separation gel were 15 mm × 15 mm × 1 mm. Six 0.5 mm 

diameter injection holes were drilled on the top plate of the cassette with 2.2 mm separation. 

Gel cassettes for 2-D separation were the same except no injection holes were drilled.  

Figure 2. Micro-injector made by connecting a 0.5 µl syringe with a short fused-

silica capillary. A 3-D translational stage was employed for precise positioning.  

Figure 3. Experimental setup for fluorescence detection of proteins in miniaturized 

gels with laser side-entry excitation. 

Figure 4. Visible fluorescence detection in 1-D SDS-PAGE with a 532 nm laser. 

Alexa Fluor-532 labeled BSA and conalbumin were mixed with RPE and BPE at the same 

concentration. Different amounts of each protein were loaded into each lane as indicated on 

top of the images. Images were taken of the same gel by: A, 532 nm laser side-entry 

excitation; the laser entered from right side with excitation power of 100 mW/cm2; and B, 

532 nm laser top-entry excitation with excitation power of 15 mW/cm2. Both images were 

taken with 10 s exposure, and both images were inverted.  

Figure 5. A, background level of a blank gel excited at 275 nm with the laser entering 

from the right side. B, fluorescence intensity of five trypsin inhibitor protein spots with 275 

nm laser side-entry excitation. Shaded columns represent the data from the raw image, and 

blank columns represent the normalized data. Protein loading for each lane was 1.0 ng except 

lane 5 which was 0.8 ng. Bottom: raw gel image of five trypsin inhibitor protein spots.  

Figure 6. Native fluorescence detection in one-dimensional miniaturized gels with 

275 nm laser side-entry excitation. Samples were divided into two groups: A, high range, 16 

ng-0.8 ng per protein band and B, low range, 800 pg-20 pg per protein band. The amounts of 

the protein bands were indicated on top of both images. For both gels, the laser entered from 

the right side with excitation power of 90 mW/cm2. The high range gel image was taken with 
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10 s exposure and the low range gel was taken with 30 s exposure. Both images were 

inverted and the contrasts of images were adjusted separately for proper visualization.  

Figure 7. Calibration plots for 1-D SDS-PAGE separations with UV laser side-entry 

excitation. Each point represents the average of three replicates. 

Figure 8. Native fluorescence detection of proteins in 2-D gels by 275 nm laser side-

entry excitation. A, 1 μg E. coli protein extract; the image was taken with 60 mW/cm2 

excitation power and 30 s exposure; B, 0.25 μg E. coli protein extract; the image was taken 

with 90 mW/cm2 excitation power and 30 s exposure; and C, 30 ng E. coli protein extract; 

the image was taken with 120 mW/cm2 excitation power and 30 s exposure. All the images 

were inverted.  
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5  
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Figure 6  
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Figure 8  
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CHAPTER 3. DETECTION OF NOVEL BIOMARKERS FOR EARLY 
RISK ASSESSMENT OF PROSTATE AND BREAST CANCERS 

Papers published in Chemical Research in Toxicology and The Prostate* 

Y. Markushin, H. Zhang, P. Kapke, N.  Gaikwad, E.G. Rogan, E.L. Cavalieri, E.S. 

Yeung, and R. Jankowiak 

 

Abstract 

Estrogens, including the natural hormones estrone (E1) and estradiol (E2) are thought 

to be involved in tumor induction. Catechol estrogen quinones (CEQ) derived from 4-

hydroxyestrone (4-OHE1) and 4-hydroxyestradiol (4-OHE2) react with DNA and form 

depurinating –N7Gua and –N3Ade adducts. This damage leads to mutations that can initiate 

breast and prostate cancer. To determine whether this type of DNA damage occurs in 

humans, urine samples from prostate and breast cancer patients and healthy subjects were 

analyzed in a blind study. A primary objective was to determine whether any of the cancer 

patients had formed 4-OHE1(E2)-1-N3Ade or 4-OHE1(E2)-2-NacCys, which were 

suspected to be the major adduct formed by CEQ. Monoclonal antibodies (MAb) to 4-

OHE1(E2)-2-NacCys and 4-OHE1(E2)-1-N3Ade were developed and characterized. The 

interested adducts were extracted from the urine samples using affinity columns equipped 

with the specifically developed monoclonal antibodies (MAb). A CE spiking procedure with 

synthesized DNA adduct-standards, absorption/ luminescence spectroscopies, and mass 

spectrometry were used to identify the biomarkers of interest.  The depurinating DNA adduct 

4-OHE1-1-N3Ade was detected at much higher level in urine samples from subjects with  

 

___________________________________________________________________________ 

* Modified from Chemical Research in Toxicology 2005, 18, 1520-1527. Copyright © 2007 

American Chemical Society & The Prostate 2006, 66, 1565-1571. Copyright © 2007 Wiley-

Liss, Inc. 
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prostate cancer and urological condition compared to healthy males. The same adduct and 4-

OHE1-2-NacCys were also identified in urine samples from a woman with breast carcinoma; 

and no adduct was detected in urine from a control woman. Since the level of the two CEQ-

derived DNA adducts is significantly elevated in the urine of cancer patients, we suggest that 

their presence could be used as an indicator of breast and prostate cancer risk.   

 

Introduction  

The natural estrogens, estrone (E1) and estradiol (E2), are metabolized at the 2- or 4- 

position with the formation of catechol estrogens, which, in turn, are metabolically oxidized 

into catechol estrogen quinones (CEQ). The latter have been implicated in the etiology of 

human breast cancer by various research studies.1-5 The reaction of the CEQ, in particular 

CE-3,4-Q, with DNA forms the depurinating 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-

N7Gua adducts.1, 5, 6 These two adducts constitute >99% of the total adducts formed. The 

CE-2,3-Q form only small amounts of the depurinating 2-OHE1(E2)-6-N3Ade adducts.7 

These adducts generate apurinic sites that may lead to cancer-initiating mutations,8, 9 which 

transform cells,10, 11 thereby initiating cancer. 

Exposure to estrogens is a well-established risk factor for breast cancer.12 The 

possible role of estrogens in prostate cancer is thus far less well-established than in breast 

cancer. Limited evidence exists of an association between estrogens and risk of prostate 

cancer.13 One important piece of evidence is the higher level of circulating estrogens 

observed in African-American men, who have a two-fold higher risk of prostate cancer, 

compared to European-American men.14 More direct evidence in support of the role of 

estrogens in prostate carcinogenesis comes from experiments using Noble rats treated with 

testosterone plus E2.15, 16 This combined treatment induces ductal adenocarcinoma of the 

prostate in 100% of the rats,15 whereas treatment with only testosterone causes prostate 

cancer in only 40% of the rats. Treatment with 5α-dehydrotestosterone, which unlike 

testosterone cannot be converted to E2, results in only a 4% incidence of prostate cancer. 
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These carcinomas have been suggested to arise from estrogen-induced initiation and 

testosterone-produced promotion of the prostate tissue.13 

In our earlier work, CE-3,4-Q-derived DNA adducts were identified in tissue extracts 

from breast cancer patients.17 In this case, samples were analyzed by CE interfaced with 

room temperature absorption and low-temperature (laser-excited) phosphorescence 

spectroscopies. The level of the 4-OHE1-1-N3Ade in the breast tissue extracted from a 

patient with breast carcinoma (8.40±0.05 pmol/g of tissue) was larger by a factor of about 30 

than the level in the breast tissue sample from a woman without breast cancer (0.25±0.05 

pmol/g of tissue).17 Although more breast tissue samples from women with and without 

breast cancer need to be studied, these results suggested that the -N3Ade adducts could serve 

as biomarkers to predict the risk of breast cancer.  

To determine whether this type of DNA damage occurs in men, urine samples from 

subjects with prostate cancer, benign tumors, benign prostate hyperplasia, and a urological 

condition, as well as healthy males, were analyzed in a blind study. A primary objective was 

determining whether any of the subjects had formed 4-OHE1(E2)-1-N3Ade and  4-OHE1(E2)-

2-NAcCys (Fig. 1), as the major adducts formed by CE- 3,4-Q. We showed that CE-3,4-Q-

derived DNA adducts are present in human urine samples, and that their identification can be 

accomplished by a combination of techniques. 

 

Materials and Methods  

Caution: Catechol estrogen quinones are hazardous chemicals and should be handled 

carefully and in accordance with NIH guidelines. 

 

Chemicals and CEQ-DNA Adduct Standards:  4-OHE1 and 4-OHE2 were 

synthesized according to Dwivedy et al.18 The 4-OHE1- and 4-OHE2-derived DNA adduct 

standards were synthesized as previously described.6, 19 Structural analysis of the above 

standards was accomplished via NMR and mass spectrometry (MS).6, 19 Ultra-pure grade 
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glycerol was obtained from Spectrum Chemical (Gardena, CA). The purity of standards for 

CEQ-derived DNA adduct standards, originally separated by HPLC, was verified in our 

laboratory by capillary electrophoresis (CE) and low-temperature luminescence 

spectroscopy. CEQ-derived DNA adducts, which are heat- and oxygen-senstive, were kept 

for longer-term storage at –80°C under inert atmosphere (N2 or Ar). Samples were dissolved 

in methanol:buffer (80:20), with the following buffer content: 0.1 M ammonium acetate and 

1mg/L ascorbic acid in nanopure water, pH 4.5.  Tris-[hydroxymethyl]-aminomethane was 

purchased from Fisher Scientific (Fairlawn, NJ). Phosphoric acid and polyoxyethylene 8 

cetyl ether (C16E8) were obtained from Sigma-Aldrich (St. Louis, MO).   

 

Monoclonal Antibodies (MAb): Ovalbumin (OA) and keyhole limpet hemocyanin 

(KLH) were purchased from Pierce Biotechnology, Inc., Rockford, IL. Delbecco’s Modified 

Eagle medium and horse serum were purchased from Mediatech, Inc., Herndon, VA, and 

Valley Biomedical, Inc., Winchester, VA, respectively. N-(9-Fluorenyl) methoxycarbonyl 

multiple antigenic peptides (Fmoc MAP) resin was purchased from Applied Biosystems, 

Foster City, CA. Well-established methods20 were used to generate an immune response in 

the mice. The 4-OHE1(E2)-2-NAcCys-16α, β-MCC linker was conjugated to KLH and used 

in an immunization protocol with 25 µg of antigen/mouse/injection using Freund's 

incomplete adjuvant. Serum titers were established using 4-OHE1(E2)-2-NAcCys conjugated 

to OA. Mouse spleen cells were fused with an equal number of SP2/O cells (40 million of 

each) and plated in 16 × 96 well microtiter plates. When hybridoma wells started to turn 

yellow, the plates were screened using an ELISA assay. Five hundred nanograms of OA-4-

OHE1(E2)-2-NAcCys-16α, β-MCC in binding buffer (100 mM NaHCO3, pH 9.3) was used to 

coat each well of a Nunc maxisorb plate. An affinity column was made to purify MAb by 

immobilizing the 4-OHE1(E2)-2-NAcCys-16 α, β-MCC on a MAP resin core used to 

commonly synthesize peptides. The hapten was immobilized on the MAP resin bead column 

using the same chemistry used to attach it to the carrier proteins.21 This column was used to 

purify MAb by passage of 3 mL of the supernatant fluid from the selected hybridoma over 

the column. The column was washed with 50 mL of PBS, and antibody was eluted with 100 
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mM acetic acid, pH 2.5. The eluted antibody was isotyped using a kit specific for mouse 

antibody, confirming that the antibody was of mouse origin and not from the horse serum 

used in growing the cells. This purified MAb was immobilized on an agarose bead column 

(Aminolink kit, Pierce Inc.) and used to detect 4-OHE1-2-NAcCys in PBS buffer that was 

spiked with various concentrations of the conjugate.  

The 4-OHE1-1-N3Ade-16α,β-MCC linker was conjugated to KLH and used in an 

immunization protocol with 25 µg of antigen/mouse/injection using Freund’s incomplete 

adjuvant. Serum titers were established using 4-OHE1-1-N3Ade conjugated to OA.  Mouse 

spleen cells were fused with an equal number of SP2/O cells (40 million of each) and plated 

in 16 x 96-well microtiter plates. When hybridoma wells started to turn yellow, the plates 

were screened using an ELISA assay.  Five hundred ng of OA-4-OHE1-1-N3Ade-16α,β-

MCC in binding buffer (100 mM NaHCO3, pH 9.3) was used to coat each well of a Nunc 

maxisorb plate. MAb were produced by immunizing mice with 4-OHE1-1-N3Ade attached to 

an appropriate linker that was conjugated to keyhole limpet hemocyanin (KLH). Hybridoma 

cell lines were screened using 4-OHE1-1-N3Ade conjugated to ovalbumin (OA).  Since there 

is no immunological cross reactivity between KLH and OA, positive hybridoma cell lines 

secreting antibody against 4-OHE1(E2)-1-N3Ade could be rapidly identified using OA−4-

OHE1-1-N3Ade. Affinity columns were developed and used to purify MAb against 4-OHE1-

1-N3Ade.  MAbs were concentrated by centrifugal filters (Millipore Corporation, Bedford, 

MA) using Amicon Ultra 100,000 molecular weight cut. This allowed separating solutes 

from low MW compounds. The purified MAb was immobilized on an agarose bead column. 

We have demonstrated that this developed MAb binds with high affinity to 4-OHE1-1-

N3Ade adducts (Ka = 108 M-1, data to be published elsewhere), highly discriminating against 

a large spectrum of closely related CEQ-derived metabolites, and has been used here for 

detecting 4-OHE1(E2)-DNA adducts in urine samples. Columns were used to capture and 

preconcentrate the hapten of interest from the urine samples. 

 

Capillary Electrophoresis:  The analysis of urine extracts was done using a P/ACE 

MDQ capillary electrophoresis (CE) system (Beckmancoulter, CA) with a photodiode array 



www.manaraa.com

51 

 

 

(PDA) detector for simultaneous detection of electropherograms and UV absorption spectra 

of separated analytes. Bare fused-silica capillary (Polymicro Technologies, Phoenix, AZ) 

with 21cm effective length and 31.2 cm total length (75 μm I.D. and 360 μm O.D.) was used.  

The running buffer was 0.5% C16E8 in 0.25 mM Tris-phosphate (pH 3.5). Before injection, 

the solvent in the sample was evaporated by vacuum pump; the sample residue was then 

diluted with the same volume of 75 μM H3PO4 solution. The same extract was also separated 

with an ISCO (Lincoln, NE) model 3140 Electropherograph System, and re-analyzed by low-

temperature luminescence spectroscopy. The CEQ-derived DNA adduct standards, and the 

extracts from the immunoaffinity columns were analyzed with field amplified sample 

stacking (FASS) conditions. FASS22, 23 was used for analyte preconcentration. To achieve 

reproducible and accurate stacking results, a water plug was injected into the capillary before 

the sample (at 0.2 psi for 12 seconds) followed by the electrokinetic injection of urine extract 

sample at +10 kV for 30 seconds. The applied electric field for separation was 480 V/cm, and 

the running temperature was 25°C.  The absorption detection was set at the PDA mode to 

obtain the electropherograms under different UV wavelengths and the absorption spectra of 

the separated analytes.  After each run, the capillary was rinsed with 0.1 M NaOH for 2 min, 

and running buffer for 5 min.  Electropherograms were obtained in the absorbance mode. 

CE-separated DNA adducts were identified based on the characteristic migration times and 

corresponding absorption spectra.  Various detection wavelengths for the CE 

electropherograms were utilized (e.g. 214, 260, and 276 nm).   

  

 Luminescence and Absorption Spectroscopy: Luminescence spectra were obtained 

using an excitation wavelength of 257 nm of a Lexel 95-SHG-257 CW laser.  Emission was 

dispersed by a Model 218 0.3-m monochromator (McPherson, Acton, MA), equipped with a 

300 G/mm grating, providing a resolution of ~1 nm.  Spectra were detected with an 

intensified CCD camera (Princeton Instruments, Trenton, NJ) using gated and non-gated 

modes of detection.  A fast shutter, operated by a Uniblitz driver control (model SD-12 2B), 

was synchronized with the CCD camera (ICCD-1024 MLDG-E1) and used for time-resolved 

phosphorescence measurements. Using this setup, time-resolved phosphorescence spectra 

could be measured in 0.5 sec intervals with a gate width of 0.5 sec. To ensure good glass 



www.manaraa.com

52 

 

 

formation in off-line spectroscopic measurements, glycerol (50% by volume) was added to 

the samples in buffer just prior to cooling to 77 K in a liquid nitrogen optical cryostat with 

suprasil optical windows.  Samples (ca. 20 µL) were contained in suprasil tubes (2-mm i.d.). 

All spectra were background corrected.     

HPLC and Mass Spectrometry: The sample was diluted 1:10 in 50% methanol in 

water and analyzed twice by Ultra performance liquid chromatography. The parent-daughter 

transition used in analysis was m/z=420.1 ->m/z=296.0. Instruments: Waters Acquity Binary 

solvent manager and Sample Manager Micromass Quattro Micro mass spectrometer 

Gradient: 80% (H2O, 0.1% Formic Acid), 20% (Acetonitrile, 0.1% Formic Acid) to 79% 

(H2O, 0.1% Formic Acid), 21% (Acetonitrile, 0.1% Formic Acid) in 4 minutes, 79% (H2O, 

0.1% Formic Acid), 21% (Acetonitrile, 0.1% Formic Acid) to 45% (H2O, 0.1% Formic 

Acid), 55% (Acetonitrile, 0.1% Formic Acid) in 6 minutes. Standard curve and quantitation 

was done using QuanLynx v4.0.   

 

Results and Discussion  

MAb Raised Against 4-OHE1(E2)-2-NAcCys Conjugates. Mice were immunized 

with KLH-[4-OHE1(E2)-2-NAcCys]. KLH was used as the carrier to immunize the mice 

because of its extremely large size (molecular mass over 5 million Da). The small hapten 

molecule (i.e., 4-OHE1(E2)-2-NAcCys, which is not immunogenic alone) attached to a large 

protein carrier (KLH) made the complex suitable for immunogenic reaction. The mice were 

tested for an immune response to 4-OHE1-2-NAcCys using OA-[4-OHE1(E2)-2-NAcCys] 

and OA alone. Mice demonstrated an elevated antibody titer with OA-[4-OHE1(E2)-2-

NAcCys] as compared to OA alone (data not shown). The mouse with the highest titer was 

IP boosted with KLH-4-OHE1(E2)-2-NAcCys and used for hybridoma production. After 

fusing the immunized mouse spleen cells to the SP2/O cells to make the hybridomas and 

plating in 16 × 96 well plates, positive hybridoma wells were identified by ELISA using OA-

4-OHE1(E2)-2-NAcCys as an antigen to immobilize captured MAb. Most of the wells had 

optical density (OD) values of less than 0.1. However, the wells that had hybridomas 
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secreting antibody to the 4-OHE1(E2)-2-NAcCys hapten were quite apparent (data not 

shown). That is, the wells where the antibody was produced had much higher OD values, 

typically in the range of 0.5-1.0, clearly indicating that antibody(assigned as 2E9) was 

produced against the 4-OHE1(E2)-2-NAcCys conjugates. 

 

Detection of 4-OHE1-2-NAcCys and Related Analytes Released from the 2E9 

MAb-Based Column. To further evaluate the binding affinities of the 2E9 MAb developed 

for the detection of 4-OHE1(E2)-2-NAcCys conjugates, CE has been used to analyze a water-

based buffer sample spiked with five analytes of interest: 1, 4-OHE1-1-N3Ade; 2, 4-OHE1; 3, 

4-OHE2; 4, 4-OHE1-2-NAcCys; and 5, NAcCys. The concentration of analytes 1, 2, 3, and 5 

used for the CE separation was about 10-6 M, while the concentration of the key analyte of 

interest was smaller by a factor of 100, i.e., 10-8 M. The corresponding room temperature CE 

absorbance-based electropherogram (λobs = 214 nm) is shown in Figure 2 (curve a). The solid 

arrow in Figure 2 indicates the position of analyte 4 as confirmed by standard spiking 

procedure with a higher concentration of 4-OHE1-2-NAcCys (data not shown). As expected, 

the peak corresponding to this analyte is hardly discernible in curve a of Figure 2. A specially 

prepared 2E9 MAb-based affinity column was used to capture and concentrate the 4-OHE1-

2-NAcCys out of the above solution. The recovery rate for 4-OHE1-2-NAcCys (based on the 

integrated phosphorescence intensity measurements obtained for various aliquots eluted from 

the affinity column) was about 80% (data not shown). The resulting electropherogram, 

shown as curve b in Figure 2, shows that mostly one analyte has been preconcentrated by the 

affinity column. This peak (near 5 min) corresponds to the 4-OHE1-2-NAcCys conjugate, as 

confirmed by standard spiking procedures and phosphorescence spectroscopy (not shown for 

brevity). The very small peaks near 3.5 and 10 min most likely correspond to peaks 1-3 and 

5, respectively; however, only the identity of peak 5 was confirmed by the spiking procedure. 

Because the sample corresponding to electropherogram b (Figure 2) was preconcentrated by 

2 orders of magnitude, we conclude that the binding efficiency for analytes 1, 2, 3, and 5 is 

negligibly small. Comparison of the integrated peak intensities in the electropherograms a 

and b reveals that the column preferentially captures the 4-OHE1-2-NAcCys conjugate. 
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CE with FASS and Absorbance/Phosphorescence Detection in Spiked Urine 

Samples. Figure 3 shows four absorbance-based CE electropherograms to further 

demonstrate the selectivity of the MAb raised against one of the analytes of interest, i.e., 4-

OHE1(E2)-2-NAcCys. Spectrum a corresponds to a CE electropherogram obtained for a 

mixture of 4-OHE1-1-N3Ade (peak 1; c = 5 × 10-5 M), 4-OHE1-2-NAcCys (peak 2; c = 10-4 

M), 4-OHE1 (peak 3; c = 5 × 10-5 M), and 4-OHE1-1-N7Gua (peak 4; c = 10-5 M) in a buffer 

solution. Curve b is the electropherogram of PBS buffer (2 mL) spiked with the mixture of 

the above four analytes diluted by a factor of 100 and run through the 2E9 MAb-based 

affinity column. Only peak 2 is observed, with an ~80% efficiency of recovery. Two orders 

of magnitude higher concentrations of 4-OHE1-1-N3Ade, 4-OHE1, and 4-OHE1-1-N7Gua in 

comparison with that of 4-OHE1-2-NAcCys provided similar recovery of the latter 

compound (data not shown). Spectrum c shows another CE electropherogram obtained after 

a 10-fold buffer-diluted human urine sample was spiked with 4-OHE1-2-NAcCys (c = 10-6 

M) and subsequently run through the affinity column. A remarkably simple CE 

electropherogram was obtained with the major peak (#2) corresponding to 4-OHE1-2-

NAcCys. The identification of this peak was confirmed by the standard spiking procedure. 

Again, an excellent recovery of ~80% was obtained. Finally, curve d in Figure 3  was 

obtained for the 4-OHE1-2-NAcCys standard (c = 10-4 M) and is shown for comparison. 

These data clearly demonstrate that very efficient recovery of analytes of interest can be 

obtained, which, in combination with the various separation and identification methods 

described in this article, should provide the means for analyzing human samples. 

 

Detection of 4-OHE1(E2)-1-N3Ade Adducts in Urine from Subjects with 

Prostate Cancer and Urological Condition and Healthy Individuals.  Immunoaffinity 

columns were used to purify the antibody by passing 3 mL of supernatant fluid from the 

selected hybridoma over the column. Then the columns were washed with 50 mL of PBS and 

antibody eluted with 100 mM acetic acid, pH 2.5. The eluted antibody was isotyped using a 

kit specific for mouse IgG antibody, confirming that the antibody was of mouse origin and 
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not from the horse serum used in growing the cells. This purified MAb (assigned as 15G8) 

was immobilized on an agarose bead column (Aminolink kit, Pierce Inc.) and used to detect 

4-OHE1-1-N3Ade in a PBS buffer that was spiked with various concentrations of –N3Ade 

adduct. Characterizing of the 15G8 antibody and affinity column with that antibody were 

carried in a similar manner as discussed previously for antibody 2E9 (data not shown).  

Urine samples (20 mL each) from sixteen subjects were analyzed in blind studies 

using different detection methods as described above, as listed in Table 1. Among them six 

were newly diagnosed prostate cancer patients; two had benign urological conditions 

(erectile dysfunction or benign prostatic hyperplasia); two were undergoing prestate biopsy 

(later proved to be both benign tumors, or negative) and five were from health people as 

controls. All specimens were initially analyzed using affinity column purification, i.e. the 

adducts of interest were extracted from the urine samples using home-built columns equipped 

with 15G8 MAbs. Eluted extracts from immunoaffinity columns were studied by laser-exited 

low-temperature phosphorescence spectroscopy and liquid chromatography (LC) interfaced 

with mass spectrometry (LC/MS/MS). In addition, urine samples after lyophilization and 

methanol extraction were pre-concentrated and analytes therein were separated by capillary 

electrophoresis (CE) with field amplified sample stacking (FASS) and detected by 

absorbance-based electropherograms. A spiking procedure with synthesized DNA adduct-

standards and absorption/ luminescence spectroscopies were used to identify the biomarkers 

of interest. 

The bars in Figure 4 (row #1) correspond to the integrated (normalized) area of the 

absorbance based CE electropherogram peaks assigned to 4-OHE1(E2)-1-N3Ade. Only the 

samples from: i) the subjects with prostate cancer (samples #3-6, 8, 10, and 11), ii) a subject 

with a benign prostate tumor (sample #1), iii) a subject with a benign prostatic hyperplasia 

(BPH) (sample #9), iv) a subject with urological condition (sample #2), and v) a patient 

tentatively diagnosed with a prostate cancer (sample #7), contained 4-OHE1(E2)-1-N3Ade 

adduct. The adduct level (normalized to creatinine concentration) varied from sample to 

sample with concentration levels of about 15-240 pmole per mg of creatinine.  The identity 

of samples #1-11 in the row #1 was confirmed by low-temperature (77K) luminescence 



www.manaraa.com

56 

 

 

spectroscopy. The bars in the row #2 of Figure 4 correspond to the integrated (normalized) 

area of the low temperature phosphorescence spectra obtained for urine samples #1-11 eluted 

from the immunoaffinity columns. An example of the phosphorescence spectra obtained for 

samples #1, 4 and 6 are shown in the right inset of Figure 4; the red spectrum overlapping 

with the phosphorescence spectrum of sample #6 is that of the standard adduct.  In fact, all 

spectra measured for samples #1-11 revealed emission identical to the phosphorescence 

spectrum of the 4-OHE1(E2)-1-N3Ade adduct standard (data not shown), thus proving again 

that the analyte eluted from the 15G8-MAb based column corresponds to the 4-OHE1(E2)-1-

N3Ade. The amount of this adduct in samples #1-11 using low temperature 

phosphorescence-based calibration curves was about 10-150 pmole per mg of creatinine, 

depending on the sample. With the detection limit of about 10-9 M17 no 4-OHE1-1-N3Ade 

adducts were observed in samples #12-16 in agreement with the CE/FASS results. The 

observed emission intensity was near the background level. 

Finally, ultra-performance liquid chromatography (LC) interfaced with mass 

spectrometry (MS), LC/MS/MS, was used for further validation of the above findings. That 

is, all samples eluted from the immunoaffinity columns were also analyzed by the 

LC/MS/MS. The findings are summarized in the row #3 of Figure 4.  Also in this case only 

the samples #1-11 revealed the presence of the 4-OHE1-1-N3Ade adducts. Although similar 

adduct distribution is observed in all samples using three different methodologies, the 

relative adduct concentration observed in elutions from immunoaffinity columns was 

somewhat smaller than that observed by CE/FASS with absorbance detection. The latter is 

not surprising as an efficiency recovery of a typical column is ~70-80%.17, 22  An example of 

the HPLC chromatogram obtained for sample #11 is shown in the left inset of Figure 4; the 

main peak near 2 min in the chromatogram corresponds to the 4-OHE1-1-N3Ade adduct 

indicating that the extract eluent from the immunoaffinity column was relatively pure. The 

spectrum corresponds to the fragmented daughters, m/z 135.9 and 296.0, which were 

obtained from MS of the adduct parent ion, m/z 420.1. Note that 4-OHE1-1-N3Ade (and not 

4-OHE2-1-N3Ade) is being excreted into the urine of all subjects with prostate cancer 

(samples #3-6,8,10, and 11). This suggests that this adduct may be a biomarker for risk of 

developing prostate cancer. Interestingly, the same adduct was also observed in a subject 
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with a benign prostate tumor (sample #1), and in two subjects with benign prostatic 

hyperplasia (BPH) (sample #9) and an urological condition (sample #2), respectively. 

Sample #7 was obtained from a patient suspected to have a prostate cancer whose biopsy test, 

at the present time, was negative for cancer. However, LC/MS/MS did not reveal the 

presence of any 4-OHE1-1-N3Ade adduct in samples #12-16 obtained from healthy 

individuals in perfect agreement with low temperature phosphorescence and CE/FASS 

studies. Several other healthy individuals tested by LTP (data not shown) also did not reveal 

any presence of the 4-OHE1-1-N3Ade adduct. This might suggest that the subject who 

provided sample #7 is at high risk of developing prostate cancer and that BPH might be 

related to CEQ-induced DNA damage. 

Detection of 4-OHE1-2-NAcCys Conjugates and 4-OHE1-1-N3Ade Adducts in 

Urine of Breast Cancer Patients. An example of an absorbance based electropherogram 

obtained at 214 nm for a 20 mL urine sample from a breast cancer patient run through the 

2E9 MAb based column and subsequently eluted for CE/FASS analysis is shown in curve (b) 

of Figure 5A. As expected, only one major peak (#1) is observed, which corresponds to 4-

OHE1-2-NAcCys as proven by spectrum (a) obtained for the 4-OHE1-2-NAcCys standard.  

Identification of this analyte was also confirmed by the standard spiking procedure and room 

T absorption spectra of peak #1 (data not shown).  A similar procedure was used to identify 

the presence of 4-OHE1-1-N3Ade in urine of the same patient; namely, spectra c, d, and e of 

frame B correspond to a urine sample from a breast cancer patient, 4-OHE1-2-NAcCys 

conjugate standard, and urine from a healthy individual, respectively. The migration time of 

the main peak in curve c is identical to that of peak #2 obtained with 4-OHE1-2-NAcCys 

standard (curve d), clearly suggesting that this conjugate is excreted into urine of the breast 

cancer patient. Note that this conjugate is not observed in the urine sample from the healthy 

individual (see curve e). However, quantitation of the above analytes was impossible, as both 

MAb-columns were saturated, suggesting relatively high concentrations (research in 

progress).  

The above finding is also supported by the data shown in Figure 5C; here, spectrum f 

is the electropherogram obtained with CE/FASS for the same methanol-extracted and pre-
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concentrated (by evaporation) urine sample. Curves g and h were obtained for the same urine 

extract after spiking with standards of 4-OHE1-2-NAcCys (curve g) and 4-OHE1-1-N3Ade 

(curve h), respectively.  Comparison of curves f, g, and h indicates that peaks 1 and 2 

correspond to the 4-OHE1-2-NAcCys and 4-OHE1-1-N3Ade, respectively.  Quantitative data 

revealed that the concentration of 4-OHE1-2-NAcCys and 4-OHE1-1-N3Ade in this urine 

sample is about 10-6 and 2.5×10-7M, respectively.  We hasten to add that so far none of the 

above two analytes has been identified in urine samples from healthy women, suggesting that 

both 4-OHE1-2-NAcCys and 4-OHE1-1-N3Ade could constitute excellent biomarkers of 

breast cancer risk. 

 

Conclusions 

Monocolonal antibody 2E9 to 4-OHE1(E2)-2-NAcCys and monocolonal antibody 

15G8 to 4-OHE1-1-N3Ade were synthesized and characterized. They were used for detection 

and quantitation of 4-OHE1(E2) conjugates and related analytes in human urine. The binding 

specificity study of the MAbs revealed a high degree of discrimination between 4-OHE1-2-

NAcCys/4-OHE1-1-N3Ade and 4-OHE1/4-OHE2/NAcCys. The purified MAbs were 

individually immobilized on agarose bead columns, which were used to capture and 

preconcentrate the hapten of interest out of urine samples. A number of structurally related 

standards were used to estimate the selectivity and specificity of the chosen MAb. CE with 

FASS in the absorbance mode and off-line spectral characterization of samples released from 

the affinity column were used for identification and quantitation of 4-OHE1-2-NAcCys, 4-

OHE1-1-N3Ade and related analytes in water-based buffer and/or human urine matrixes 

from both healthy group and cancer patients.  

4-OHE1-1-N3Ade has been detected at much higher level in urine from subjects with 

prostate cancer and urological condition compared to healthy males. The same adduct and 4-

OHE1-2-NacCys were also identified in urine from a woman with breast carcinoma. We 

believe that this is the first-ever indication that CEQ-derived DNA adducts are present in the 

urine samples from subjects with prostate or breast cancer. The significant elevation of 
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depurinating adducts in the urine of the prostate/breast cancer patients compared to the 

controls clearly indicates that exposure to catechol estrogen quinones is associated with 

increased risk of breast and prostate cancer. Therefore, we propose that the presence of 

depurinating adducts in human urine samples could be used as a risk factor for estrogen 

induced-cancer. We hasten to add that these biomarkers could serve as a model to investigate 

the hypothesis that metabolically activated endogenous estrogens are involved in initiating 

both prostate and breast cancers.   
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Table 1. Selected Characteristics of the Subject Population 

Patient ID # in 
Figure 2 

Diagnosis Age PSA (Prostate 
Specific Antigen) 

Smoking Status 

3 Prostate Ca 68 4.2 Non-smoker 

4 Prostate Ca 70 4.8 Smoker 

5 Prostate Ca 47 5.6 Non-smoker 

6 Prostate Ca 63 6.7 Non-smoker 

8 Prostate Ca 61 3.6 N/A 

10 Prostate Ca 67 5.6 Non-smoker 

11 Prostate Ca 53 N/A Non-smoker 

1 Benign biopsy 67 7.3 N/A 

2 Erectile dysfunction 59 N/A N/A 

7 Benign biopsy 76 1.4 Non-smoker 

9 BPH (post-TUNA)a 80 1.2 Smoker 

12 Health control 21 b Non-smoker 

13 Health control 23 b Non-smoker 

14 Health control 17 b Non-smoker 

15 Health control 21 b Non-smoker 

16 Health control 35 b Non-smoker 

a. TUNA: trans-urethral needle ablation (a minimally invasive treatment for BPH) 

b. Not measured 
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Figure Captions 

Figure 1. Chemical structures of 4-OHE1(E2), 4-OHE1(E2)-2-NAcCys, and 4-

OHE1(E2)-1-N3Ade. 

Figure 2. Curve a is the CE electropherogram (observation wavelength at 214 nm); 

peaks 1, 2, 3, and 5 correspond to 4-OHE1-1-N3Ade, 4-OHE1, 4-OHE2, and NAcCys, 

respectively (concentration, c = 10-6 M). Peak 4 (near 5 min migration time labeled by a solid 

arrow) corresponds to the 4-OHE1-2-NAcCys at a significantly lower concentration (i.e., 10-8 

M). Curve b is the CE electropherogram obtained for the same mixture passed through the 

2E9 MAB-based affinity column and preconcentrated by a factor of 100. The major peak 4 

corresponds to the captured and highly concentrated 4-OHE1-2-NAcCys conjugate. 

Figure 3.  Curve a: CE electropherogram of a mixture of four analytes in a buffer 

solution; peaks 1, 2, 3, and 4 correspond to 4-OHE1-1-N3Ade, 4-OHE1-2-NAcCys, 4-OHE1, 

and 4-OHE1-1-N7Gua, respectively. Curve b: electropherogram of a PBS buffer sample 

spiked with analytes 1-4 listed above and run through the affinity column [only 4-OHE1-2-

NAcCys (peak 2) is recovered]. Curve c: CE electropherogram obtained after a diluted 

human urine sample was spiked with 4-OHE1-2-NAcCys is run through the affinity column. 

Peak 2 reveals an excellent recovery of 4-OHE1-2-NAcCys. Curve d: electropherogram of 4-

OHE1-2-NAcCys standard (see text). 

Figure 4.  Identification of the 4-OHE1-1-N3Ade adduct in human samples from men 

with prostate cancer or urological conditions and healthy men as control. Right inset: The 

spectra labeled 1, 4 and 6 refer to individual samples 1, 4 and 6, respectively; the red 

spectrum is that of the standard. Left inset: Identification of the parent compound and m/z 

135.9 and 296 are the fragmentation daughters selected for the unequivocal identification of 

the adduct. 

Figure 5.  Identification of 4-OHE1-2-NAcCys (peak 1) and 4-OHE1-1-N3Ade (peak 

2) in human urine from a woman with breast carcinoma (see text). 
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Figure 4.  
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Figure 5.  
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CHAPTER 4. MOBILITY-BASED WALL ADSORPTION 
ISOTHERMS FOR COMPARING CAPILLARY ELECTROPHORESIS 

WITH SINGLE-MOLECULE OBSERVATIONS  

A paper published in Analytical Chemistry* 

Ning Fang, Hui Zhang, Jiangwei Li, Hung-Wing Li and Edward S. Yeung 

 

 

 

Abstract 

The adsorption properties of R-phycoerythrin (RPE), an autofluorescent protein, on 

the fused-silica surface were studied in capillary electrophoresis (CE) and in single-molecule 

experiments. The band shapes and migration times were measured in CE and adsorption and 

desorption events were recorded at the single-molecule level by imaging within the 

evanescent-field layer using total internal reflection fluorescence microscopy. The adsorbed 

RPE molecules on the surface of the fused-silica prism were counted with confidence based 

on ImageJ software. The capacity factor and desorption rate were estimated from the 

counting results. The mobility-based adsorption isotherms were constructed from both 

computer simulations and experiments to determine the capacity factor.  

 

 

___________________________________________________________________________ 

* Reprint with permission from Analytical Chemistry 2007, 79(17), 6047-6054. 

Copyright © 2007 American Chemical Society 
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Introduction 

Understanding molecular dynamics at liquid-solid interfaces is important in many 

research areas, such as retention in liquid chromatography (LC) and gas chromatography 

(GC), peak distortion caused by wall adsorption in capillary electrophoresis (CE), 

biocatalysis at solid membranes, etc. Chromatographic separation is usually attributed to the 

differential rate of migration induced by solute distribution between the stationary and 

mobile phases. The sorption isotherm, a plot of the solute concentration in the stationary 

phase against that in the mobile phase at a constant temperature, can provide important 

knowledge of the underlying thermodynamic functions. Adsorption on the surface of the 

solid stationary phase is often the main mechanism, and the methods for experimental 

determination of the adsorption isotherms in LC have been reviewed.1 In CE, it is common 

that the analytes are adsorbed to the capillary wall to induce non-uniform zeta-potential and 

differential transport velocities,2 causing peak broadening or distortion.  Theoretical studies 

and modeling of capillary wall adsorption have been carried out by several groups.3-8 Graf et 

al. demonstrated qualitatively several adsorption properties of proteins on fused-silica- and 

polyacrylamide-coated capillaries.9 However, there were few studies to measure the 

adsorption strength quantitatively in CE mainly due to two complicated issues: kinetics (non-

equilibrium CE wall adsorption vs. generally-assumed instant equilibrium in LC/GC) and 

geometry (adsorption on the inner surface of cylindrical capillary column vs. even 

distribution of solutes in the stationary phase).  

The effectiveness of a separation is a function of the component’s capacity factor, as 

well as the column’s efficiency and selectivity. Capacity factor of a component is of central 

importance for the description of chromatographic migration and is a measure of the degree 

to which it partitions into the stationary phase. In this study, a two-dimensional CE 

simulation model7 is utilized to establish a quantitative description of adsorption in CE and to 

allow the use of mobility-based adsorption isotherms for determining adsorption parameters. 

It is well known that both electrostatic and hydrophobic interactions govern protein 

adsorption at liquid-solid interfaces.10, 11 Both rate theory and band broadening in 

chromatography and electrophoresis have been explained by using statistical theory.12 Direct 
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monitoring of individual molecular motion and interactions at the liquid-solid interface 

would provide valuable information regarding these and other related phenomena. The total 

internal reflection (TIR) geometry provides excellent background rejection and confines 

excitation to the evanescent field layer (EFL), where the motions of individual molecules are 

recorded.13-15  

R-phycoerythrin (RPE), as a model protein, is a 240-kDa autofluorescent protein 

consisting of 7 subunits and about 30 chromophores.16-18 Phycobiliproteins such as RPE, β-

phycoerythrin (BPE), and allophycocyanin (APC) are stable and highly water-soluble 

globular proteins derived from cyanobacteria and eukaryotic algae.19 They are slightly acidic, 

with isoelectric points around pH 5, and are stable over the pH range 5-9.20 The pI of RPE 

depends on the source of the protein. Kang et al. reported the pI of RPE from cyanobacteria 

and eukaryotic algae at pH 4.3-4.7.21 

In the present work, we studied the adsorption properties of RPE both on the inner 

wall of cylindrical fused-silica capillary columns under the influence of an electric field and 

on the flat fused-silica prism surface by single-molecule imaging. Using CE, the capacity 

factor of RPE at pH 5.0 was determined by the mobility-based adsorption isotherm. Using 

total internal reflection fluorescence microscopy, motions of single RPE molecules were 

imaged at the water/fused silica interface, and a reliable counting method was developed for 

the adsorbed RPE molecules. We demonstrate the potential application of single-molecule 

imaging as a means to measure the capacity factor and desorption rate of a molecule on a 

chromatographic surface. 

 

Experimental Section 

Buffer Solutions. The various buffer systems used were as follows: sodium acetate/ 

acetic acid (20 mM, pH 4.0, 5.0, 5.5, 6.0), Gly-His/HCl (10 mM, pH 7.0), and Gly-

Gly/NaOH (10 mM, pH 8.2). A.C.S. grade or higher glacial acetic acid and sodium acetate 

were purchased from Fisher Scientific (Fair Lawn, NJ). Gly-His (G1627) and Gly-Gly 
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(G3915) were purchased from Sigma (St. Louis, MO). Ultra-pure 18-MΩ water was used in 

all solutions. All solutions were filtered through 0.22 µm filters. 

Sample Preparation. The RPE stock solution (4 mg mL–1 or 16.7 µM) was 

purchased from Molecular Probes (Eugene, OR). RPE samples were prepared in different 

ways for CE and single-molecule detection experiments. 

Coumarin 535 (Exciton, Dayton, OH) was chosen as the EOF marker for CE 

experiments. Coumarin 535 was first dissolved in about 200 µL of methanol and diluted to 

10 mL with the pH 5.0 buffer solution. The coumarin solution was then centrifuged at 12000 

rpm for 5 min, and finally the clear solution was taken out and used to dilute the RPE stock 

solution to the following concentrations: 0.25, 0.5, 1, 2, 4, 20, and 40 µg L–1. 

For single-molecule imaging, the RPE stock solution was first diluted to a 

concentration of 16.7 nM with the pH 8.2 buffer solution. This RPE solution was then diluted 

to 16.7 or 1.67 pM with appropriate buffer solutions right before imaging.  

CE Apparatus and Procedure. The experiments were carried out on a Beckman 

Coulter MDQ System (Fullerton, CA) with a laser-induced fluorescence (LIF) detector. A 

Beckman Laser Module 488 was used as the excitation source, and a 600 nm (FWHM 70 nm) 

band-pass filter (CVI Laser, Albuquerque, NM) was placed in the filter housing for RPE 

detection. 50 cm long (40 cm to detector) × 50 or 75 µm inner diameter, fused-silica capillary 

columns (Polymicro Technologies, Phoenix, AZ) were used. A temperature of 25 °C was 

maintained in all CE experiments. 

Prior to use, the capillary columns were treated with 1 M NaOH, methanol, and 

purified water for 15 min each. Then, the capillary was flushed with pH 5.0 buffer solution 

for 30 min and was conditioned overnight. Between CE runs, the column was rinsed with 10 

mM NaOH for 5 min, water for 2 min, and the buffer solution for at lease 10 min. In each CE 

run, an RPE sample solution was injected at 0.5 psi for 5 s, and then a 10 kV potential was 

applied to the capillary. Each RPE sample was analyzed four times. 

CE Simulation Conditions. The newly-developed 2D CE simulation program7 was 

used to demonstrate the effects of wall adsorption. In order to run the simulation within a 
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reasonable computing time, the capillary conditions were chosen as: capillary length, Lt = 5 

cm; length to detector, Ld = 4 cm; inner radius, rc = 25 μm; applied voltage, 1000 V; length 

of the rectangular injection plug, LA = 1.8 mm; initial concentration of A, from 0.005 to 100 

mol m–3; diffusion coefficient, 9 2 -1
A 10 m sD −= ; electrophoretic mobility, 

-8 2 -1 -1
ep,As 2 10 m V sμ = × ; maximum concentration of available binding sites on the wall, 

-6 -2
0 4 10 mol mw = × ; adsorption and desorption rate constants, 3 -1 -1

a 100 m mol s ,k =  
-1

d 100 sk = ; electroosmotic flow, eo 0μ = . In addition, the three key parameters for 

numerical calculation, longitudinal space increment Δz, radial space increment Δr, and time 

increment Δt, were set to 1.0×10–5 m, 1.25×10–5 m, and 0.001 s, respectively. 

Single-Molecule Detection System. The evanescent-wave excitation geometry was 

similar to that described previously.12 Each 5-μL of sample solution was sandwiched 

between a No. 1 (22×22 mm2) Corning glass coverslip and the hypotenuse face of the right-

angle UV-grade fused-silica prism (Part #01 PQB 002; Melles Griot, Irvine, CA). A laser 

beam was focused and directed through the prism to the sample interface. The angle of 

incidence was about 66°. Therefore, the laser beam was totally internally reflected at the 

prism/solution interface and an evanescent field of ~100 nm thick was created.  

A 532-nm solid-state continuous wave laser (45 mW, μ-Green model 4611, Uniphase, 

San Jose, CA) was used as the excitation source. A Uniblitz mechanical shutter (model 

LS2Z2, Vincent Associates, Rochester, NY) and a driver (model T132, Vincent Associates) 

were synchronized to the Pentamax 512-EFT/1EIA intensified charge-coupled device (ICCD) 

camera (Princeton Instruments, Princeton, NJ). The shutter only lets the laser beam pass 

through when the ICCD was on to reduce photobleaching. Two 532-nm, long-pass edge 

filters (Semrock, Rochester, NY) were placed between the objective lens and the ICCD to cut 

off stray light from the excitation beam. A microscope with a 100× oil immersion objective 

lens (Zeiss Plan-Neofluar 100×/1.3 oil) was employed. The objective was coupled to the 

coverslip with immersion oil (type FF, n = 1.48, Cargille, Cedar Grove, NJ). The ICCD 

exposure frequency was 5 Hz (0.2 s/frame), and the exposure time for each frame was 10 ms. 

A sequence of frames were acquired for each sample via WinView/32 (Princeton 

Instruments).  
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Image Analysis. He et al. demonstrated a method to count free DNA molecules using 

ImageJ.22 In the present work, we need to not only identify and count RPE molecules, but 

also study the dynamics of adsorption/desorption processes by determining whether a 

molecule is exactly at the surface or just close to the surface within the evanescent field layer 

and how long it is adsorbed. In general, a molecule is considered adsorbed if it stays at the 

same position for two or more consecutive frames (images). However, the actual counting 

process based on this simple idea is challenging because of inhomogeneous illumination of 

the laser beam, fluctuations in the fluorescence intensity, photobleaching, aggregation, and 

Brownian motion of RPE molecules. We herein propose a method based exclusively on the 

functions and plug-ins within ImageJ, a public-domain image processing program (version 

1.38, National Institutes of Health, USA), for counting adsorbed RPE molecules.  

Single-molecule videos were recorded by repeating the following steps: moving to a 

new observation region, focusing the objective to the surface, and taking a set of 10-20 

images at a frequency of 5 Hz before the RPE molecules started to be photobleached. The 

videos (in Winview/32 SPE file format) required pre-treatment to become uniform and to 

reduce the background. The video files were first loaded into ImageJ using a SPE format 

plug-in. Then the background subtraction function, which implements the rolling-ball 

algorithm, was applied on the image stacks to bring the backgrounds of all frames to the 

same level. Finally, the smoothing function was used to improve the signal-to-noise ratio. 

The mean and standard deviation (σ) of the reduced background calculated from the images 

of blank samples were approximately 20±18. Similar noise levels were found in the frames 

taken with the low-concentration (1.67 pM) RPE samples. However, the noise level for the 

samples at 16.7 pM increased by ~50% due to Brownian motion of a larger number of RPE 

molecules in the solution. 

To decide whether RPE molecules were adsorbed on the surface or were free in the 

solution, a threshold was applied to convert the entire stack of images into black (value 0, 

background) and white (value 255, bright RPE molecules) images. A reasonable choice for 

the threshold was the mean of the background plus 4σ. The number of white spots in each 

frame did not necessarily give the right count of RPE molecules because of Brownian motion 
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and random noise. Noise could be greatly reduced, however, by removing all the white 

particles that were less than 4 pixels in size. The size requirement of 4 pixels was justified by 

carefully inspecting the images. Less-than-4-pixel bright spots were most likely caused by 

the ICCD camera’s shot noise or by the RPE molecules that came close enough to the surface 

but were not actually adsorbed or were only adsorbed for a fraction of the exposure time (10 

ms). 

The next step was to sum up multiple (n ≥ 2) consecutive well-focused, black and 

white frames taken at the exact same position by using the stacks/Z project function in 

ImageJ. Each pixel in the resulting image had only one of the n+1 discrete intensity values (0, 

1×255, 2×255, …, n×255), corresponding to the number of the original frames in which the 

same pixel was bright. The threshold was then set to a value greater than (n-1)×255 to 

identify the bright particles in all original frames. The particle analysis function was used to 

count the number of such particles that satisfied a minimum size requirement. This counting 

result gave the number of adsorbed molecules in the first frame that stayed at the same 

positions for at least n consecutive frames, or a time period calculated as n times the 10-ms 

exposure time plus (n-1) times the 190-ms frame interval. Next, we moved one frame 

forward in the same set of images or to a new set (taken at a different position) to continue 

counting. 

The minimum size requirement in particle analysis was of great importance to 

accurate counting. When n = 2, the chance of having two randomly moving molecules at the 

same position was relatively high, so the minimum size was set to 4 to reduce-false positive 

counts. When n ≥ 3, the chance of false-positive counts was reduced substantially, but the 

chance of false negative counts due to fluctuations in fluorescence intensity was increased; 

therefore, the minimum size was set to 1 in that case. The results based on these practical 

rules matched quite well with manual counting. 
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Results and Discussion 

In the present work, quantitative analysis of adsorption at liquid/solid interfaces was 

carried out in a three-stage approach: (1) discovery of the relationship between analyte 

mobility and concentration in the presence of wall adsorption using a 2-dimensional 

computer simulation of CE; (2) calculation of the adsorption capacity factor from the 

experimental mobility-based adsorption isotherm; (3) direct observation and counting of 

adsorbed molecules at the liquid/solid interface. The results from these three stages will be 

discussed sequentially. 

 

STAGE ONE: Discovery with Computer Simulation of CE 

 In a simple CE experiment, an uncoated fused silica-capillary (total length Lt, length 

to detector Ld, inner radius rc) is filled with a buffer solution. A sample solution containing 

one analyte (A) is injected to form a narrow plug of a length LA. An electric field is then 

applied across the capillary, and the analyte plug migrates toward the detector. The velocity 

(v) is determined by the electric field strength (E), the electroosmotic mobility ( eoμ ), and the 

electrophoretic mobility ( epμ ): ep eo( )v Eμ μ= + . During electrophoretic migration, the 

analyte also interacts with the capillary wall, as described by eq. 1. 

As + W = Aw (1) 

in which As is the free analyte (in solution), Aw is the analyte adsorbed to the wall, 

and W is the binding site on the wall. The adsorption and desorption processes are considered 

to take place between the wall and the layer of analyte solution closest to the wall. The width 

of this layer (ls) is determined by many factors, including the diffusion coefficient of the 

analyte (DA), the adsorption and desorption rates (ka and kd), the analyte concentration, and 

the number of available binding sites on the wall.  

This type of CE experiments with consideration of wall adsorption can be simulated 

with the newly-developed 2D simulation model of CE.7 The mathematical model and 
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computer implementation have been discussed extensively in the previous paper. To describe 

the wall interaction, a nonlinear Langmuir second-order kinetic law is used: 

  (2)  
 
in which aw is the concentration of the analyte adsorbed to the wall, as is the analyte 

concentration in the layer closest to the wall, w is the concentration of wall binding sites 

available to the analyte, and w0 is the total concentration of binding sites. Note that as is in 

the unit of mol m–3, while aw and w0 are in the unit of mol m–2. Due to the cylindrical shape 

of the capillary, the change in as has to be corrected according to the radius of the capillary 

and the thickness of the layer:7 

  (3)  
 
When the number of analyte molecules is small compared with the number of total 

binding sites, the wall interaction can be treated approximately as a linear case with eqs. 4 

and 5. 

  (4)  

  (5)  
 
Average Mobility. Due to the adsorption/desorption processes, analyte migration 

slows down as the analyte spends a certain fraction of time on the wall. The average apparent 

mobility ( Aμ ) can be calculated by the following equation: 

 A
As As Aw Awf fμ μ μ= +  (6)  

in which Asf  and Awf  are the fractions of the different forms ( As Aw 1f f+ = ), Asμ  is 

the apparent mobility of A in the solution ( As ep,As eoμ μ μ= + ), and Awμ  is the apparent 

mobility on the capillary wall. An adsorbed molecule does not move on the wall. It can only 

migrate in the solution after being released from the wall; therefore, Aw ep,Aw eo 0μ μ μ= + =  , 

or ep,Aw eoμ μ= − . Substituting the electrophoretic mobilities for the apparent mobilities in eq. 

6 gives eq. 7: 

[ ]s c
a s 0 w d w

s c s

2( )
(2 )

da rk a w a k a
dt l r l

− = − −
−

( )s c
a 0 s d w

s c s

2
(2 )

da rk w a k a
dt l r l

− = −
−

w
a 0 s d w

da k w a k a
dt

= −

w
a s d w a s 0 w d w( )da k a w k a k a w a k a

dt
= − = − −
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 A
ep As ep,As Aw ep,Aw As ep,As Aw eof f f fμ μ μ μ μ= + = −  (7)  

Equations 6 and 7 are similar to the nonlinear regression equation for determining 

binding constants in affinity capillary electrophoresis (ACE).23, 24 However, they cannot be 

used in a similar manner to determine wall adsorption parameters because the average 

mobility and the fractions of free and adsorbed analyte can be affected by the experimental 

conditions and the characteristics of the analyte: kinetic constants, diffusion coefficient, inner 

radius of capillary, conditions of the capillary wall (concentration of binding sites, charge 

distribution, etc.), electrophoretic mobilities, electroosmotic flow, and length and initial 

concentration of the analyte plug. It is difficult to study all these factors in actual CE 

experiments. The present work demonstrates that computer simulation is a convenient tool in 

assessing the effects of these factors. 

Computer-Simulated Electropherograms. The electropherograms simulated with 

the conditions listed in the experimental section are shown in Figure 1. When the analyte is 

not adsorbed to the capillary wall at all, the rectangular injection plug results in a perfect 

Gaussian peak due solely to longitudinal diffusion. When wall adsorption occurs, the elution 

of the analyte peak is delayed, and peak distortion is observed. At the low end of the 

concentration range, the amount of the analyte in the injection plug is small compared with 

the number of available binding sites on the wall. Therefore, nearly all analyte molecules in 

the plug undergo a similar degree of interaction with the wall. The capillary wall reaches its 

full impact on the analyte migration and the migration time increases to a maximum value, 

which in turn means minimum average analyte mobility. The resulting peaks are near-

Gaussian-shaped, but broader than the ones without wall adsorption. At the high end of the 

concentration range, the analyte can easily saturate the available binding sites on the wall. 

The analytes at the front of the plug can interact with the wall as dictated by the kinetic rate 

constants, but the analytes at the back cannot be adsorbed to the already-saturated wall. Thus, 

the latter group travels almost exclusively in the bulk solution and at a faster speed. As a 

consequence, the peak migration times are closer to those without wall adsorption, and long 

tails on the analyte peaks are observed.  
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Another interesting observation in Figure 1 is that the trailing ends of all peaks meet 

at the same position. This is predictable because the analyte molecules at the front edges of 

all injection plugs in the very beginning are affected by adsorption equally and most 

efficiently to produce identical migration times. 

Because the fraction of time that an analyte molecule spends on the wall is related to 

its position in the analyte plug and the initial analyte concentration, Asf  and Awf  in eqs. 6 

and 7 are not uniform for the entire analyte plug. Therefore, the regression methods for ACE 

cannot be used directly for determining wall adsorption parameters. 

Computer-Simulated Adsorption Isotherms. The electrophoretic mobilities of the 

analyte peaks are calculated from the peaks in Figure 1 and then plotted against the initial 

analyte concentrations in Figure 2A. At the high end of the concentration range, the 

electrophoretic mobility rises to a maximum value. At the low end, the electrophoretic 

mobility decreases nearly linearly towards a minimum value as the analyte concentration 

reduces to 0. This set of data points can be fitted with an exponential-rise-to-maximum 

equation, which has the following general form: 

 N1 2
0 1 2 N(1 ) (1 ) ... (1 )b xb x b xy y a e a e a e−− −= + − + − + + −  (8) 

in which a1, b1, a2, b2, …, aN, bN, and y0 are constants. The R-squared value (R2) is 

used to evaluate how well the equation fits the data set. This theoretical nonlinear adsorption 

isotherm is generated with well-defined experimental conditions and kinetic parameters; 

therefore, a highly significant fit (R2→1) is expected from regression. Note that in eq. 8, y0 is 

the only linear parameter, and the remaining parameters (a1, b1, …) are nonlinear 

(exponential). The number of exponential terms can be adjusted to reflect the complexity of 

the problem. 

Equation 8 was found to provide the best fit among all the equations that have been 

tried. As shown in Figure 2A, the three-parameter (dot-dash), five-parameter (long-dash), 

and seven-parameter (solid) forms are tested, and the seven-parameter form gives a near-

perfect fit (R2=1.0000). The maximum mobility ( -8 2 -1 -12.000 10 m V s× ) is equal to the 

expected value: μep,As. The minimum mobility ( -8 2 -1 -11.516 10 m V s× ) indicates the full impact 
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of wall adsorption. These mathematical outcomes can be related to the system’s experimental 

conditions. The one linear factor is μep,As and related conditions (Lt, Ld, E). There are also a 

number of nonlinear factors: kinetics (ka, kd, and w0), wall capacity (w0, Ld, rc, and LA), radial 

diffusion (DA and rc), etc. One parameter may belong to more than one group. The effects of 

some nonlinear factors (LA, Ld, DA, and rc) cannot be easily described by mathematical 

equations directly. Computer simulation makes it possible to reveal the outcomes of the 

complex system. 

Buffer conditions (composition, ionic strength, pH, etc.) may also change the 

adsorption isotherm in actual CE experiments, but they are not part of the discussion in this 

paper for the following reasons: CE buffers can often be optimized to minimize peak 

distortion caused by undesirable conditions. Once a well-buffered CE system is established, 

the electric field strength may be assumed to be constant throughout the capillary and the 

buffer conditions can be incorporated into the linear factor (μep,As). If unnecessary 

complexities are brought to the CE system with complicated buffer conditions, the large 

number of contributing factors cannot be easily determined. 

For lower analyte concentrations, a linear adsorption isotherm (Figure 2B, short-dash) 

can be made using simple linear regression. The linear and nonlinear adsorption isotherms 

are analogous to the ones used in conventional chromatography, in which the analyte 

concentration in the mobile phase is plotted against the analyte concentration in the 

stationary phase.25 The linear adsorption isotherm is also regulated by the linear kinetic 

equations (eqs. 4 and 5). 

Wall Adsorption Parameters. The fraction of free analyte can be calculated by eq. 9, 

which is derived from eqs. 6 and 7.      

(9)  

 

in which nAs and nAw are the mole number (or mass) of the analyte in the solution and 

on the wall, respectively, and  μep,As is given by the maximum mobility in Figure 2A. The 

AA A
epAs

As As eo
As Aw As ep,As eo ep,As

,  or   when 0nf f
n n

μμ μ μ
μ μ μ μ

= = = = =
+ +
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capacity factor k’ (also known as retention factor or partition ratio) is defined in eq. 10. Using 

eqs. 9 and 10, k’ at each analyte concentration can be calculated and plotted in Figure 2C. 

  (10)  
 
Note that fAs and k’ are the average values for the entire analyte peak. Only when the 

analyte concentration approaches 0 that these values become uniform for the entire peak. 

From the y-intercept in Figure 2D, k’ at zero analyte concentration ( 0
'k ) is 0.319. 

The radius-dependent partition ratio can be converted to the concentration ratio: 

  (11)  
 
in which β (defined as half of the radius rc) is the phase volume ratio. Plugging in the 

values of 0
'k  and rc, aw/as = 7.98×10-6 m for the simulated CE system as the concentration 

approaches zero. The concentration ratio may also be derived from the partition coefficient 

(K) multiplied by w, if adsorption and desorption kinetics is much faster than electrophoretic 

migration and an equilibrium can be assumed at any moment.  

CE Experimental Considerations. Computer simulation and mathematical 

derivation provide the framework for understanding wall adsorption in CE. However, more 

factors need to be considered in actual experiments. 

First, subtle information on the adsorption isotherm is lost due to actual experimental 

errors. Therefore, seven- or five-parameter regression equations are no longer required. 

Nonetheless, the maximum and minimum mobilities can still be used to calculate the 

adsorption parameters. 

Second, the adsorption isotherm is often obtained for an analyte with weak wall 

adsorption. It may take a long time (or forever) for an analyte with strong wall adsorption to 

migrate out of the capillary, which makes mobility measurements difficult.  

Third, analyte sample solutions over the full concentration range of the adsorption 

isotherm are required. If high concentrations are not feasible due to solubility or cost, 

nonlinear regression can still be carried out to get the maximum mobility with compromised 
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accuracy. In addition, the analyte must be detectable at the low end of the concentration 

range. 

Fourth, the theoretical adsorption isotherm is demonstrated assuming μeo = 0; 

however, the adsorption-induced non-uniform zeta-potential can change the EOF constantly 

during an actual CE run.8 This error is monitored and partially compensated for by using a 

non-adsorbing neutral EOF marker. In addition, changes in the bulk flow velocity may also 

affect adsorption/desorption kinetics. 

 

STAGE TWO: Experimental Adsorption Isotherms in CE 

 Adsorption of RPE on the fused-silica capillary wall (rc = 25 or 37.5 µm) in 20-mM 

acetic acid/sodium acetate buffer (pH 5.0) was chosen as the model system. 

Electropherograms obtained with different RPE concentrations (0.25 ~ 40 mg L–1) are 

displayed in Figure 3, in which the horizontal axis is a mobility scale as opposed to the 

standard time scale. The low-concentration RPE peaks were narrower and migrated slower 

than the higher-concentration ones. Distortions at the right-hand slopes of the peaks were 

caused by heterogeneity of the protein sample rather than adsorption. Similar shapes were 

observed by Kang and Yeung even at pH 8.2 when no adsorption would occur.21 The 

experimental adsorption isotherms were fitted nonlinearly over the full concentration range 

(Figure 4A) and linearly in the low concentration portion (Figure 4B) to give the maximum 

and minimum effective mobilities. The correlation between the partition ratio and RPE 

concentration was further constructed in Figure 4C (nonlinear) and 4D (linear) using eqs. 11 

and 12. Because the actual EOF mobility was not zero and could change from run to run, 

each individual measurement was plotted instead of the average value of four consecutive 

measurements. The value of 0
'k  was found to be 0.069±0.005, which means that ~6.5% of the 

total RPE molecules, calculated as 0.069/(1+0.069), was adsorbed on the capillary wall at 

very low concentration. This value is much smaller than the 0
'k  obtained for the exaggerated 

conditions used in the simulated experiments so peak tailing at high concentrations in Figure 

3 is not as noticeable as that in Figure 1. The concentration ratio can be calculated using eq. 



www.manaraa.com

83 

 

 

11 to be (8.6±0.6)×10–7 m. The experiments were repeated with a 75-μm-i.d. capillary, and 

the same calculation procedure was performed to give 0
'k = 0.040±0.005 and aw/as = 

(7.5±0.8)×10-7 m. Due to the larger volume of the 75-μm-i.d. capillary, this 0
'k  is smaller 

than that for the 50-μm-i.d. capillary. 

 

STAGE THREE: Capacity Factor from Single Molecule Imaging 

 The capacity factor can be simply represented by the ratio of the number of 

molecules that adsorbed at the interfacial region to the number of molecules that merely 

diffuse without adsorption within the experimental region. The number of adsorbed 

molecules can be counted manually or by image-processing software. But the number of 

diffusing molecules can only be estimated from sample concentrations, volumes, and the 

specifications of the microscope and ICCD camera. In our experiments, the 5-µL RPE 

solution dispensed on the surface formed a layer 10.3 µm thick between the prism and the 

coverslip (an area of 484 mm2). Assuming a uniform distribution of RPE molecules, the 

estimated molecule numbers within the observation region (an area of 13271 μm2) were 1378 

for 16.7 pM and 138 for 1.67 pM. Native fluorescent images of RPE at the fused-silica 

surface were recorded at the pH range of 4.0-8.2. Our observations were similar to those 

reported by Kang and Yeung.21 At pH 5.0, a significant fraction of RPE molecules were 

adsorbed and remained on the surface for a relatively long time. That made the counting 

results more reliable than at other pH conditions. 

Experimental Counting Results. The simplest way of counting the adsorbed RPE 

molecules regardless of the time these molecules stay adsorbed is to project two consecutive 

frames together and count the number of bright particles as described in the experimental 

section. However, this method would definitely underestimate the adsorbed molecule number 

because the count is actually the number of molecules that stay adsorbed for at least two 

frames (or 200 ms) and not the number actually adsorbed in the first frame. A better way of 

counting is demonstrated in Figure 5A, in which the adsorbed molecule numbers are plotted 

against the numbers of projected frames (n ≥ 2). The data points (black dots) are fitted with 
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an exponential decay function, which intercepts with the vertical line, y = 1, to give the actual 

count.  

Over 30 sets of images taken at different surface positions and/or with different 

samples were processed for each concentration, and the average counts and standard 

deviations were 220±40 for 16.7 pM and 21±5 for 1.67 pM. Using the counting results and 

the estimated total number of RPE molecules in the observation region, the capacity factor 

was calculated to be 0
'k =0.25, with a ~20% relative standard deviation. This capacity factor 

can be compared with those determined in the capillary. A plot of 0
'k  vs. 1/ rc (rc in μm) 

gives a straight line with a slope of 1.22, an intercept of 0.014 and a correlation coefficient of 

0.998. These values are thus in good agreement with one another. 

There may be additional differences in 0
'k  due to adsorption and desorption kinetics. 

Desorption in the capillary is greatly enhanced by the bulk flow driven by EOF and the 

electrophoretic migration of RPE molecules in contrast to the equilibrated distribution on the 

fused-silica prism surface. In addition, the surface properties are different: fused-silica 

capillary tubing produced by pulling a larger semi-fluid cylinder has smoother internal 

surface than the polished prism surface (20-10 scratch and dig). 

The accuracy of this counting method could be affected by photobleaching of RPE. 

The effect can be estimated by counting the numbers of adsorbed molecules in every pair of 

consecutive frames in a set of 20+ images taken at the same position. The results showed that 

the counts decreased by 3 ~ 4 per 10-ms exposure to the 45-mW laser for the 16.7 pM 

samples and 0.5 ~ 1 per exposure for the 1.67 pM samples. These counts were much smaller 

than the deviations caused by uneven surface conditions and by molecule-counting statistics. 

Therefore, photobleaching was ignored in the calculations. 

The desorption rate can also be estimated from the changes in counts over time. The 

white circles in Figure 5A correspond to the differences between every two adjacent 

molecule counts. These differences were then multiplied by the ratio of the total adsorbed 

molecule number to the number of adsorbed molecules remaining since the first frame. In 

this way, the white circles were converted to the black triangles in Figure 5B, showing nearly 
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constant desorption rates (~40 per frame or 200 ms). This behavior was expected because 

equilibrium has been established on the surface. 

 

Conclusions 

In the present work, three powerful tools – computer simulation, CE experiments, and 

single-molecule imaging – were united to advance the understanding of 

adsorption/desorption phenomena at solid/liquid interfaces. Computer simulation has proven 

to be an invaluable tool in nearly every field of science. Here simulated and experimental 

results together provided convincing support for the proposed mobility-based adsorption 

isotherm. This constitutes the first report of quantitative analysis of the adsorption capacity 

factor of target molecules on the bare fused-silica or coated capillary wall. On the other hand, 

single-molecule imaging experiments revealed the activities of individual molecules at the 

fused-silica prism surface, and these microscopic observations were complementary to the 

ensemble averages obtained from actual and simulated CE experiments. The adsorbed 

molecules were counted with confidence by extrapolation of the data points constructed from 

the adsorption times of individual molecules. The CE results and single-molecule detection 

results demonstrated good agreement, although further studies of the correlation between 

these results were somewhat limited by the relatively large random errors inherent to the 

single-molecule approach and by the differences of surface conditions. The ability to 

measure the adsorption strength with CE or with single-molecule detection is an important 

step forward in understanding the basic separation mechanisms of CE and LC. 
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Figure Captions 

Figure 1. Normalized simulated peak profiles for various injected analyte 

concentrations. The concentration (in mol m-3) in the initial injection plug is displayed on top 

of each curve. Other conditions are listed in the text. 

Figure 2. (A) Simulated adsorption isotherms over the full concentration range using 

three nonlinear regression equations: the 3-parameter form (dot-dash), 
8 0.50821.5286 10 0.4598(1 )xy e− −= × + − ; the 5-parameter form (long-dash), 
8 2.1743 0.31811.5168 10 0.1299(1 ) 0.3479(1 )x xy e e− − −= × + − + − ; and the 7-parameter form (solid) 

as shown above the plot. (B) Linear adsorption isotherm for low concentrations (short-dash) 

is compared with the 7-parameter regression curve (solid). (C) Plot of partition ratio vs. 

analyte concentration over the full range. Three forms of regression equations were tested, 

and the one that gave a highly significant fit (solid) is shown. (D) Linear (short-dash) 

regression curve vs. the nonlinear (solid) one. All four panels use concentration as the x-axis.   

Figure 3. Electropherograms of RPE adsorption experiments. The electropherograms 

are presented with a transformed mobility scale (based on the EOF peak). The left panel 

displays seven normalized RPE peaks. The right panel shows the location of the coumarin 

535 peaks and their recorded fluorescence intensities (relative fluorescence units). The 

distortion of the coumarin peak becomes more severe as the RPE concentration gets higher 

mainly because of the increasingly altered EOF.  

Figure 4. (A) Experimental adsorption isotherm. The error bars indicate the standard 

deviations of four consecutive runs at each RPE concentration. The maximum mobility 

obtained from the nonlinear regression is -0.0002177 cm2 V-1 s-1 with a ~0.5% RSD. (B) 

Linear regression of the points in the low end of the RPE concentration range. The minimum 

mobility given by the y-intercept is -0.0002428 cm2 V-1 s-1 with a ~0.5% RSD. (C) Nonlinear 

regression of the correlation between the partition ratio and RPE concentration. (D) Linear 

regression for the low concentration portion of (C). All four panels use RPE concentration as 

the x-axis. 
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Figure 5. (A) Plot of the average adsorbed molecule number vs. the number of 

projected frames. The white circles that show the differences between consecutive counts are 

positioned in the middle of the two corresponding black circles. (B) Original and converted 

differences between two consecutive counts. 
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Figure 2. 
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Figure 3.  
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Figure 4. 
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Figure 5.  
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CHAPTER 5. COLLOIDAL GRAPHITE ASSISTED LASER 
DESORPTION/IONIZATION (GALDI) MS AND MSn OF SMALL 

MOLECULES: DIRECT PROFILING AND MS IMAGING OF SMALL 
METABOLITES FROM FRUITES 

A paper published in Analytical Chemistry* 

Hui Zhang, Sangwon Cha, Edward S. Yeung 

 

 

 

Abstract 

Due to a high background in the low mass region, conventional MALDI is not as 

useful for detecting small molecules (molecular weights < 500 Da) as it is for large ones. 

Also, spatial inhomogeneity that is inherent to crystalline matrixes can degrade resolution in 

imaging mass spectrometry (IMS). In this study, colloidal graphite was investigated as an 

alternative matrix for laser desorption/ionization (GALDI) in IMS. We demonstrate its 

advantages over conventional MALDI in the detection of small molecules such as organic 

acids, flavonoids and oligosaccharides. GALDI provides good sensitivity for such small 

molecules. The detection limit of fatty acids and flavonoids in negative ion mode are in low 

femtomoles range. Molecules were detected directly and identified by comparing the MS and 

MS/MS spectra with those of standards. Various fruits were chosen to evaluate the practical 

utility of GALDI since many types of small molecules are present in them. Distribution of 

these small molecules in the fruit was investigated by using IMS and IMS/MS.  

 

___________________________________________________________________________ 

* Reprint with permission from Analytical Chemistry 2007, 79(17), 6575-6584. 

Copyright © 2007 American Chemical Society 
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Introduction 

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been 

extensively used for the analysis of large molecules such as proteins1 and synthetic 

polymers.2 The key feature of MALDI MS are its soft ionization characteristic and simplified 

spectra as mostly singly charged species are generated. Compared to electrospray ionization 

(ESI) MS, MALDI bears other advantages such as better tolerance to interference from salts 

and buffers and simpler sample preparation. MALDI has also proven to be very useful for the 

analysis of medium-size molecules (500-10 kDa) such as peptides,3 oligonucleotides,4 and 

oligo-saccharides.5 However, the analysis of small molecules (< 500 Da) by conventional 

MALDI MS is far less successful than that of larger molecules because the analyte ions are 

strongly interfered with or are suppressed by the matrix-related ions that are predominant at 

the low m/z range. 

Different approaches have been employed in MALDI MS to minimize the 

background in the low mass range. Reports includes derivatization of the analyte molecules 

to a higher molecular weight6 or using a matrix with higher molecular weight such as 

porphyrin (MW 974.6).7 Extra sample preparation was then needed, thereby limiting the 

classes of analytes that can be detected. It has been observed that matrix ions can be 

suppressed dramatically and sometimes complete suppression can be achieved under well 

controlled conditions.8, 9 For example, surfactant additives such as cetyltrimethylammonium 

bromide (CTAB) have been reported to substantially suppress the background from α-cyano-

4-hydroxycinnamic acid (CHCA).10 Laser intensity and the relative molar ratio of matrix to 

analyte are the major parameters to adjust. However a suitable molar ratio is not always 

achievable especially for native biological samples.  

Many inorganic materials have been tested as matrixes for surface-assisted laser 

desorption/ionization (SALDI), including different metal powders and metal oxide 

nanoparticles such as Ag, Au, Co, Al, Mn, Mo, Zn, Sn, W, Fe3O4, SnO2, TiO2, WO3, ZnO, 

etc.11-15 Generally, those SALDI MS can provide a cleaner background than conventional 

MALDI MS as no interference peaks from fragment ions of the organic matrixes were 

present. Another matrix-free approach for laser desorption/ionization on porous silicon 
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(DIOS) was extensively studied since 1999.16, 17 Porous silicon surfaces were etched from 

crystalline silicon chips with hydrofluoric acid and functionalized as the laser 

desorption/ionization matrix as well as trapping agents for analyte molecules. Small 

molecules including pharmaceuticals, nucleic acids, carbohydrates, and steroids were 

successfully detected.18-20 In a more recent work, commercially available silicon 

nanoparticles were utilized as an LDI matrix and the silicon powder preparation was 

optimized for the analysis of small molecules.21 Different kinds of carbon materials, 

including graphite particles,22 graphite plates,23, 24 graphite suspension in different solvents,25-

27 graphite trapped in silicone polymer,28 activated carbon powders,29 functionalized carbon 

nanotubes30-33 and fullerenes,34 and more recently pencil lead,35-37 have been suggested as 

alternative matrixes for LDI MS. Many kinds of analyte molecules over a wide mass range 

(100-6000 Da) have been detected, such as peptides,20, 26-29, 31, 33-36 phospholipids,25 

oligosaccharides,30-33, 35 fatty acids,24, 36 synthetic polymers7, 23, 26, 31, 32, 35, 37 and other various 

organic compounds.7, 15, 22-29, 31, 33-37 A more detailed description of graphite-LDI can be 

found in our previous paper.38 Recent reviews about small molecules MALDI MS39 and 

matrix-free LDI MS can be found elsewhere.40 

Imaging mass spectrometry (IMS) has proven to be a powerful technology for direct 

profiling and imaging of elements and biomolecules in tissue sections. Secondary ion mass 

spectrometry (SIMS),41, 42 MALDI43-47 and desorption electrospray ionization (DESI)48 have 

been applied as desorption/ionization techniques for the IMS of molecules such as metal 

elements, peptides, proteins, lipids and other metabolites. SIMS has the best spatial 

resolution among the three and DESI requires the least sample preparation and allows true in 

situ measurement with the simplest instrumentation.48 The spatial resolution of MALDI IMS 

is in between that of SIMS and DESI IMS, usually ranging from 80-200 µm in diameter. The 

diverse choices of lasers and matrixes make MALDI MS suitable for fast, simultaneous and 

high-throughput analyses of metabolites from tissue samples. MALDI equipped with UV 

laser has been successfully demonstrated for the imaging of peptides, proteins and lipids.43-47 

Due to the high background problem as discussed earlier there is limited application of UV-

MALDI for imaging of small molecules (< 500 Da). Infrared (IR) MALDI was introduced 

recently as a technique for imaging small metabolites from fruit samples.49 Water is used as 
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the natural matrix for IR MALDI, but it is inevitable that the sample may dry out during the 

process of IR irradiation. Different locations will thus give different sensitivities due to 

inhomogeneous water content. So far, molecules that can be detected by IR MALDI are quite 

limited, either because of the low desorption/ionization efficiency or low detection sensitivity. 

Furthermore, the spatial resolution of IR-IMS is inherently worse than that of UV-IMS.  

Previously we demonstrated that colloidal graphite was a good LDI matrix for the 

analysis of molecules in 500-1000 Da range, such as different lipid species.38 This matrix 

contains fine particles and is spatially homogeneous, making it suitable for quantitative 

imaging. The colloidal property also allows it to be easily sprayed to form a layer on top of 

tissue samples and thus simplifies imaging experiments. In this study, we investigated the 

applicability of colloidal graphite as an alternative LDI matrix for the analysis of even 

smaller metabolite molecules. Fruits contain many kinds of small molecules such as long-

chain fatty acids, small oligosaccharides, and flavonoids, so they serve as good systems to 

test the performance. GALDI MS and tandem MS were used to identify the ionized species, 

while IMS and IMS/MS were utilized to map the distribution of those molecules in fruit 

slices.  

 

Experimental Section 

Standards such as long-chain fatty acids, oligosaccharides and flavonoids were 

purchased from Sigma-Aldrich (St. Louis, MO). Dihydroxybenzoic acid (DHB) from Bruker 

Daltonics (Billerica, MA) and CHCA solution from Agilent Technologies (Palo Alto, CA) 

were used as standard MALDI matrixes. 2-Propanol-based colloidal graphite aerosol spray 

(Aerodag G) was obtained from Acheson Colloids (Port Huron, MI). Pure water was 

obtained from a MilliQ water purification system (Billerica, MA). All other chemicals were 

purchased from Fisher Scientific (Fairlawn, NJ).  

Apple and strawberry fruits were purchased from a local grocery store. Apple skin 

was peeled off by a sharp razor blade and attached to the stainless steel plate by double-sided 

tape. Apple juice was collected from crushed flesh onto a glass slide, dried and used directly. 
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A cryostat from International Equipment Co. (Needham Heights, MA) was used for 

cryosectioning. Fruit chunks were dipped in liquid N2 before they were cryosectioned into 

about 15-µm thick specimens and stored at –20 °C before mass spectrometric analysis. No 

optimum cutting temperature (OCT) compounds were used to embed the fruit samples as the 

interference to mass spectra from OCT compounds is known.50 Sectioned fruit slices were 

directly transferred and mounted onto the stainless-steel plate. Before applying colloidal 

graphite solution, the slices were dried under moderate vacuum (~50 Torr) at room 

temperature for half an hour. 

Long-chain fatty acid standards were prepared by dissolving stearic acid (C18, MW 

284.48), pentacosanoic acid (C25, MW 382.66), hexacosanoic acid (C26, MW 396.69), 

octacosanoic acid(C28, MW 424.74), and melissic acid (C30, MW 452.80) in chloroform to 

a final concentration of 200 pmole/µl each. For flavonoid standards, quercetin (MW 302.24), 

kaempferol (MW 286.23), phloretin (MW 274.27), and apigenin (MW 270.24) were 

dissolved individually in DMSO to give concentration of 5mg/ml of each; then the four 

standard solution were mixed and further diluted to a final concentration of 200 pmole/µl 

each in water/acetonitrile/trifluoroacetic acid (49.95/49.95/0.1). Oligosaccharide standards 

were prepared by dissolving ribose (MW 150.13), glucose (MW 180.16), sucrose (MW 

342.30), N-acetyl-D-lactosamine (LacNAc) (MW 383.35), maltotriose (MW 504.44), and 

maltotetraose (MW 666.58) in water/acetonitrile/trifluoroacetic acid (49.95/49.95/0.1) to a 

final concentration of 100 ng/µl each. 20 mg/mL DHB solution in 70% methanol and 30% 

water (containing a 0.1% trifluoroacetic acid) was prepared. Commercial Agilent CHCA 

solution at 6 mg/ml in 36/56/8 methanol/acetonitrile/water was purchased and used directly. 

Four times dilution of colloidal graphite solution with 2-propanol was used for GALDI MS 

and IMS.  

For all mass spectrometric analysis and IMS, an LTQ linear ion trap mass 

spectrometer equipped with vMALDI source (Thermo Electron, Mountain View, CA) was 

used. The N2 laser (337 nm) is guided to the source by a fiber-optic cable and has a 

maximum output of 280 µJ/pulse (before entering the optical fiber cable). The measured 
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laser spot size is ~100 µm in diameter on the sample plate surface. A more detailed 

description of the LTQ with vMALDI source has been reported elsewhere.46  

For conventional MALDI MS, 1 µL of DHB or CHCA matrix solution was applied 

onto the stainless-steel sample plate and let to dry in air, followed by 1 µL of sample solution 

on top of the matrix crystals. For GALDI MS of standards, 0.5 µL of diluted colloidal 

graphite solution was applied onto the stainless-steel sample plate by a micropipette and let 

to dry in air. Then 1 µL of standard solution was applied on top of the graphite spot. To 

obtain mass spectra from apple juice with GALDI, 1 µl of fresh apple juice was applied onto 

a dried (0.5 µl) graphite spot. For apple peels and fruit slices, diluted colloidal graphite 

solution was applied by a double-action airbrush (Aztek A470 with a 0.30 mm nozzle from 

Testor, Rockford, IL). The whole fruit slice was covered with colloidal graphite 

homogeneously by spraying with 20 psi air pressure and 15 cm away from the sample plate 

for 30 s. Peak identification was made by comparing both mass and tandem mass spectra 

with those of standards. 

Optical images of fruit slices were taken inside the vMALDI source before IMS. 

Serial optical images were taken every 1 mm movement of the sample stage in either x- or y-

direction. Each segment of the images has a size of 140 pixels by 170 pixels. These segments 

of optical images were reconstructed as one optical image for one fruit slice. To collect mass 

spectra, the same sample plate was rastered with 100 µm steps. For each raster point, a mass 

spectrum was recorded for desorbed ions and integrated over 3-5 laser shots. In the cases of 

IMS/MS, target precursor ions (m/z 191 or m/z 301) were first selected based on the mass 

spectral profiles of strawberry. Then the first-generation product-ion spectra of the selected 

precursor ion were collected from all rastering points on the strawberry slice. More laser 

shots were required for MS2 experiments and so 9 laser shots were averaged for each raster 

point.  

Custom software “vMALDI data browser” (Version 1.0) was used to extract mass 

spectra from specific locations and generate chemically selective images. This software was 

provided by the instrument vendor (Thermo Electron, Mountain View, CA ). The mass 

window for generating images was 0.5 Da. Intensities of the selected ion were normalized by 
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dividing by the total ion current of each mass spectrum. Then, chemically selective images 

were plotted as 3-D maps with the 3rd dimension being the normalized intensity.  

 

Results and Discussion 

MALDI and GALDI MS of Standard Mixtures of Fatty Acids, Flavonoids and 

Oligosaccharides 

Different classes of compounds were selected to compare the performance of 

conventional MALDI and GALDI. Long-chain fatty acids (C18-C30) were selected as one 

group of standards because of their important roles in many metabolic pathways of living 

organisms.51 Fatty acids can be detected by GC-MS with proper derivatization such as 

esteritication to reduce the polarity and increase volatility.52 HPLC-ESI MS can detect native 

fatty acids in the negative-ion mode through deprotonization.53 However, the basic pH 

condition which is required to produce such negative ions is not compatible with most 

reverse-phase C18 columns that typically require acidic mobile phases. To overcome this 

problem, judicious derivatization was needed.54 MALDI MS can eliminate the separation 

step but conventional MALDI matrixes do not work well for detection due to a high 

background and ion suppression in that mass region. This is underscored by the fact that none 

of the selected standard fatty acids were detected with DHB or CHCA in either positive-ion 

mode or negative-ion mode (data not shown). With GALDI, all five fatty acids (100 ng each) 

were detected as deprotonated peaks ([M – H]–), as shown in Figure 1. It is noteworthy that 

the background in the negative-ion mode of GALDI is very clean up to at least m/z 1000 

without any pretreatment. In fact, there are only a few low number carbon cluster ions, such 

as C12
–-C14

–; and the intensity of such peaks are much lower than those for the analytes. 

GALDI is very sensitive to detect those fatty acids in negative ion mode. Fig. 2 shows the 

spectrum of the fatty acid mixture with sample loading of 100fmole of each on a 3mm-in-

diameter spot. Such fatty acids can also be detected as potassium adduct ions ([M + K]+) in 

positive ion mode (data not shown), though the detection sensitivity (detection limit: 

50pmole/spot) is not as good as in negative ion mode . 



www.manaraa.com

102 

 

 

Another group of standards tested were natural phenolic molecules, the flavonoids. It 

was estimated that 2% of all carbon photosynthesized by plants is converted into flavonoids 

or related compounds.55 They have been reported to have antioxidant, antiatherosclerotic and 

anti-neurodegenerative properties, and are also known to be beneficial for the prevention of 

chronic diseases like cancer and heart diseases.56, 57 In the positive-ion mode, quercetin, 

kaempferol and apigenin were detected as [M + H]+ in both MALDI and GALDI 

experiments (Fig. 3a-c). [M + Na]+ and [M + 2Na-H]+
 ions for these three flavonoids can also 

be detected with GALDI. Phloretin was not detected with any of the three matrixes. This 

suggests that the center ring in the other three flavonoids plays an important role for 

protonation. However, it was possible to detect phloretin with GALDI in the negative-ion 

mode (Fig. 3f). Several peaks in the region of m/z 150-200 in the spectra were identified as 

in-source-fragments for the flavonoids by using tandem MS. For example, m/z 167 was 

identified as a fragment of phloretin while m/z 151 and m/z 179 were fragments of quercetin. 

Unlike GALDI, which has a clean background, with DHB and CHCA, matrix peaks are 

predominant and none of the four flavonoid standards were detected in the negative-ion 

mode (Fig. 3d-e).With GALDI, negative ion mode provides better sensitivity for detection of 

those flavonoid standards than positive ion mode does, and the detection limit are 50 fmole 

and 200 fmole/3mm-in-diameter spot, respectively. 

The third group of standards selected were oligosaccharides. Due to the lack of acidic 

or basic groups, they are difficult to be ionized with conventional MALDI. DHB can be used 

to detect large oligosaccharides (> 1000 Da)58 but smaller oligosaccharides are strongly 

interfered with by matrix ions. We tested oligosaccharides between 150-700 Da with DHB 

(Fig. 4a), CHCA (Fig. 4b), and graphite matrixes (Fig. 5). With CHCA, only larger 

molecules like LacNAc, maltotriose and maltotetraose can be detected as [M + Na]+ but not 

the smaller ones such as ribose, glucose and sucrose. DHB works slightly better than CHCA 

in that the small oligosaccharides such as glucose and sucrose can be detected. However, the 

intensity of the small saccharide peaks was very low. For example [ribose + Na]+ and 

[glucose + Na]+ peaks are strongly suppressed as they are very close to matrix peaks [DHB + 

Na]+ and [DHB + 2Na – H]+ respectively. LacNAc has the highest detection sensitivity 

among all the oligosaccharides. This may suggest that the N-acetyl group has more affinity 
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for sodium ions than the other moieties of oligosaccharides. In both the CHCA and DHB 

MALDI mass spectra (Fig. 4a-b), the matrix peaks were predominant and oligosaccharides 

peaks were strongly interfered with. With GALDI, all six oligosaccharides were detected as 

[M + Na]+ with decent signal-to-noise ratios, as shown in Fig. 5. [M + Na -18]+ peaks were 

also observed for all five oligosaccharides as water loss (Fig. 5). Neutral loss (NL) of 60 are 

known to result from the major cross-ring cleavage fragments of oligosaccharides with 1,4 

linkages.59 Here, m/z 629 and m/z 467 were observed as such fragments of maltotetraose and 

maltotriose respectively. The peak at m/z 305 corresponds to the major fragment of LacNAc. 

All of the above fragments were verified by tandem MS (data not shown). All cross-ring 

cleavage fragments were marked with asterisks in Fig. 5. That the positive-ion mode of 

GALDI gave a noisier background compared to the negative-ion mode did not prevent the 

successful detection of small oligosaccharides. Small oligosaccharides such as hexose 

(glucose or fructose) and sucrose can also be detected as [M – H]– under the negative-ion 

mode peaks, vide infra. The detection sensitivity of oligosaccharides with GALDI under 

positive ion mode is better than with GALDI under negative ion mode. For instance, the 

detection limit of sucrose is 20pmole and 100pmole/3mm-in-diameter spot, respectively. 

This can be understood as oligosaccharides have neither carboxyl group as fatty acids, or 

aromatic rings as flavonoids which can stabilize the deprotonated phenol group. 

 

Direct Detection of Small Metabolite Molecules from Fruit Samples  

Because of the sensitivity and background issues, GALDI in the positive-ion mode 

was used to detect oligosaccharides and the negative-ion mode was used to detect other 

metabolite molecules from fruit samples. Unlike experiments with the standards, colloidal 

graphite solution was applied on top of the sample, otherwise the graphite particles may not 

be accessed by laser irradiation. For imaging purposes, homogeneous coverage over the 

sample area is a must. The application methodology has been optimized for IMS of mouse 

brain tissues in our previous work38 and was used in this study without modification. 
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A list of small molecules detected directly from apple and strawberry samples were 

summarized in Table I, with concentration data wherever available.60-65 All identifications 

were made by comparing the MS spectra with those of standards. MS/MS data were also 

compared with those of standards except those at too low a concentration to give meaningful 

MS/MS data, as marked with asterisks. Tandem MS data is indispensable to identify isobaric 

ions, such as m/z 191, which were observed from both apple and strawberry. Tandem mass 

data of m/z 191 from apple and strawberry flesh are shown in Fig. 6. Notably, citric acid gave 

a predominant product ion at m/z 111 while quinic acid has specific product ions at m/z 85, 

93 and 127, as reported previously.66 By tandem MS it was confirmed that the peaks at m/z 

191 were from quinic acid in apple while such peak came from citric acid in strawberry.  

Fig. 7 shows typical mass spectra taken from different parts of the apple. Fruits in 

supermarkets are always coated with a thin layer of wax for preservation and for better 

appearance. Fatty acids are one major class of components of wax and many of those up to 

C28 fatty acids were detected from apple peel, as shown in Fig. 7a. Other compounds such as 

sugars or flavonoids were absent from the mass spectrum. The reason may be that such 

compounds were covered by the wax layer and were not accessible. Fatty acids may be 

naturally present on the apple peels as well; however, those cannot be discriminated from the 

species in the artificial wax layer.  

As shown in Fig. 7b, fresh apple juice gave malic acid, quinic acid, palmitic acid, and 

linolenic acid in the negative-ion mode. Hexose (glucose or fructose) and sucrose were 

detected as deprotonated ions as m/z 179 and m/z 341, respectively. Quercetin is one of the 

major flavonoids contained in apple and it was also detected. Fig. 7c shows the spectrum in 

the positive-ion mode. Sodium adduct ions of hexose and sucrose were detected, as well as 

potassium adduct ions. According to the USDA nutrient database, fruits usually contain 

much higher amounts of potassium than sodium (90 mg vs. 0 mg/100 g for apple and 292 mg 

vs. 37 mg/100 g for strawberry).64 

Fig. 7d is the representative spectrum taken from the apple core (endocarp). Here, 

organic acids such as malic acid and quinic acid were still observed, but the relative 

intensities were not as high as those from juice. On the other hand, higher amounts of 
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flavonoids such as phloretin and quercetin accumulated in the endocarp region. Apple peel 

also contains a lot of flavonoids and quercetin was the predominant one found on the inside 

of apple peel (data not shown).  

Fig. 8a and 8b are representative mass spectra taken from strawberry. As reported 

previously with IR-MALDI,49 strawberry contains a lot of citric acid. In our study, citric acid 

(m/z 191) was always the most intense peak in the negative-ion mode. GALDI can also detect 

those compounds which were too low in concentration to be detected by IR-MALDI, such as 

ascorbic acid and ellagic acid. Quercetin and kaempferol was also detected in the red part of 

strawberry (more details in IMS data below). Other deprotonated ions include palmitic acid, 

oleic acid, apigenin, hexose, and sucrose, as marked in Fig. 8a. Similar to the previous 

report,49 citric acid and sucrose were barely detected in the seed region, as shown in Fig. 8b. 

Instead, C16 and unsaturated C18 fatty acids were the major components.  

 

IMS of Metabolites from Apple and Strawberry  

IMS in the negative-ion mode was performed to show the detailed distributions of 

different metabolite molecules on apple and strawberry slices, as Fig. 9 and Fig. 10 

respectively. Small molecules such as malic acid, quinic acid, and sucrose distributed 

relatively evenly over the apple flesh part, as shown in Fig. 9b, c, and e. Long-chain fatty 

acid such as linoleic acid was detected all over the slice but more accumulated along the core 

line and bundles, as shown in Fig. 9d. Flavonoids also accumulated more in the core region 

but not in the flesh, as shown in Fig. 9f-i. Unlike linoleic acid, they seem to be only enriched 

in the bundles (both sepal and pedal), but not along the core line. Another interesting feature 

is that flavonoids were found in the ventral carpellary bundle (center of the apple slice) 

except for quercetin. 

The images shown in Fig. 10 were scanned from a pie-shaped strawberry slice, with 

the red skin on the right-hand side and one seed in the middle-right part. Citric acid, apigenin, 

hexose and sucrose were distributed all over the flesh, while fatty acids such as linolenic and 

linoleic acids accumulated on the seed. The peak at m/z 301.2 was detected all over the 
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strawberry with a relatively constant concentration in the flesh, but showed higher local 

intensity on the outside (red part) and the seed areas. The candidates were quercetin (MW 

302.24) and ellagic acid (MW 302.20) and the two species could be distinguished in tandem 

MS. Fig. 11a and 6b show the MS/MS spectra of ellagic acid and quercetin standards. m/z 

151 and m/z 179 were specific fragments of quercetin due to the cleavage of the center ring, 

as reported previously;56, 67 while ellagic acid is more rigid and only small fragments such as 

NL 28 and NL 44 were observed. MS/MS product ion spectra from strawberry flesh were 

similar to those from ellagic acid (Fig. 11c), while those at m/z 301.2 on the edge gave 

quercetin-like fragments (Fig. 11d). The chemically selective ion image at m/z 179 with 

precursor ions at m/z 301.2 is shown in Fig. 11e. The ambiguity in Fig. 10i is thus resolved.  

Similarly, both citric acid (MW 192.13) and quinic acid (MW 192.17) were detected 

as m/z 191 with GALDI in the negative-ion mode. IMS/MS (data not shown) with precursor 

ions at m/z 191.2 showed that product ions at m/z 111.3 were detected all over the strawberry 

slice, while no specific fragments of quinic acid (m/z 85 or m/z 93) were observed. This 

suggests that all m/z 191 ions from strawberry were from citric acid (Fig. 10c).  
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Table I. List of compounds detected directly from apple and strawberry and their 

average concentrations from the literature. All species have been checked by m/z 

against standards, and all but those with marked with asterisks have been checked by 

tandem MS.  

 Apple Strawberry 

m/z Peaks assigned Expected 
Concentrations 

g/Kg 

m/z Peaks assigned Expected 
Concentrations 

g/Kg 

Organic  
acids 

 

 

133 [M-H]– Malic Acid 4.9 *10-3 60 175 [M-H]– Ascorbic Acid* 0.59 

191 [M-H]– Quinic Acid 0.76 *10-3 60 191 [M-H]– Citric Acid 6.9-12.6 62 

255 [M-H]– Palmitic Acid 0.24 255 [M-H]– Palmitic Acid 0.12 

277 [M-H]– Linolenic Acid 0.09 277 [M-H]– Linolenic Acid 0.65 

279 [M-H]– Linoleic Acid 0.43 279 [M-H]– Linoleic Acid 0.90 

281 [M-H]– Oleic Acid 0.07 281 [M-H]– Oleic Acid 0.42 

Phenolics 

 

 

273 [M-H]– Phloretin 4.7 *10-3 60 269 [M-H]– Apigenin 0.00-0.01 

289 [M-H]– Epicatechin 47.1 *10-3 285 [M-H]– Kaempferol 4.6 *10-3 

301 [M-H]– Quercetin 45.7 *10-3 301 [M-H]– Ellagic Acid 0.06-0.5 63 

435 [M-H]– Phloridzin* 55.9 *10-3 61 301 [M-H]– Quercetin 11.4 *10-3 

447 [M-H]– Quercetin  
Glucosides* 

0.13 61 431 [M-H]– Apigenin  
Glucosides* 

 

Oligo- 
saccharides 

179 [M-H]– 

203 [M+Na]+ 

219 [M+K]+ 

Glucose/ 
Fructose* 

83.3 179 [M-H]– 

203 [M+Na]+ 
219 [M+K]+ 

Glucose/ 
Fructose* 

44.3 

 

341 [M-H]– 

365 [M+Na]+ 

381 [M+K]+ 

Sucrose 20.7 341 [M-H]– 

365 [M+Na]+ 
381 [M+K]+ 

Sucrose 

 

4.7 

Except noted, all other concentration data come from (1) See the USDA National Nutrient 

Database at http://www.nal.usda.gov/fnic/foodcomp/search/, and (2) See the USDA National 

Nutrient Database at http://www.nal.usda.gov/fnic/foodcomp/Data/Flav/flav.pdf 
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Figure Captions 

Figure 1.  Mass spectrum of fatty acid standards (C18-C30 fatty acids) with GALDI 

in the negative-ion mode. Sample loading: 200 pmole of each. 

Figure 2.  Mass spectrum and detection limit of fatty acid standards (C18-C30 fatty 

acids) with GALDI in the negative-ion mode. Sample loading: 100 fmole of each.  

Figure 3. Comparison of MALDI and GALDI spectra of flavonoid standards: 

quercetin (MW 302.24), kaempferol (MW 286.23), phloretin (MW 274.27) and apigenin 

(MW 270.24); Sample loading: 200 pmole of each. Apigenin, kaempferol and quercetin were 

observed as [M + H]+ with DHB (a) and CHCA (b) in the positive ion mode. With GALDI in 

the positive-ion mode (c), apigenin, kaempferol and quercetin are detected as [M + H] + (m/z 

271, m/z 286, and m/z 303, respectively), [M+Na] + (m/z 293, m/z 309, and m/z 325, 

respectively), and [M + 2Na - H] + (m/z 315, m/z 331, and m/z 347, respectively). Phloretin 

was not observed either. None of the four flavonoids can be detected with DHB (d) or CHCA 

(e) in the negative ion mode; However, all the four flavonoids are detected as [M - H]- ions 

with GALDI in the negative-ion mode (f). Fragment from phloretin (m/z 167) and fragments 

from quercetin (m/z 151 and m/z 179) are observed in the lower mass range as well.   

Figure 4.  Mass spectrum of oligosaccharide standards with DHB (a) and CHCA (b) 

in the positive-ion mode. Sample loading: 100 ng of each. 

Figure 5. Mass spectrum of oligosaccharide standards with GALDI in the positive-

ion mode. Sample loading: 100 ng of each. Peaks with ●: water loss fragments; peaks with *: 

major ring-cleavage fragments. 

Figure 6. Product ion spectra of m/z 191 from (a) quinic acid standard; (b) apple flesh; 

(c) citric acid standard; and (d) strawberry flesh. All spectra were collected in the negative-

ion mode. 

Figure 7. Representative GALDI-MS spectra from different parts of apple. (a) fatty 

acids composition on the outside of apple peel, negative-ion mode; (b) fresh apple juice, 
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negative-ion mode; (c) hexose and sucrose from fresh apple juice, positive-ion mode; and (d) 

apple core, negative-ion mode. See Table I for peak identification in (b) and (d).  

Figure 8. Representative GALDI-MS spectra (negative-ion mode) from strawberry (a) 

flesh; and (b) seed. 

Figure 9. Chemically selective images of major ionic species identified from apple 

endocarp region with GALDI in the negative-ion mode. (a) optical image taken with reversed 

color; (b) malic acid; (c) quinic acid; (d) linoleic acid; (e) sucrose; (f) phloretin; (g). 

epicatechin; (h) quercetin; and (i) phloridzin. All peak intensities were normalized by 

dividing by the total ion current (TIC) of each spectrum. 

Figure 10. Chemically selective images of the major ionic species identified from 

strawberry with GALDI in the negative-ion mode. (a) optical image taken with reversed 

color. One seed was present as the darkest dot on the right-hand side; (b) ascorbic acid; (c) 

citric acid; (d) linoleic acid; (e) hexose; (f) sucrose; (g) apigenin; (h) kaempferol; and (i) m/z 

301-301.5 ellagic acid + quercetin. All peak intensities were normalized by dividing by the 

total ion current of each spectrum. 

Figure 11. Product ion spectra of m/z 301 from (a) ellagic acid standard; (b) 

strawberry flesh; (c) quercetin standard; (d) edge of strawberry; and (e) chemically selective 

image for product ion at m/z 179 (precursor ion m/z 301) of strawberry slice with GALDI. 

All spectra were collected in the negative-ion mode. The proposed fragment pathways are 

shown as inserts.67 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9.  
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Figure 10.  
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Figure 11. 
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Abstract 

The discrimination of isomeric disaccharides with different linkage types and 

different monosaccharide residues: glucose (Glc), galactose (Gal), and mannose (Man) at the 

non-reducing end was investigated with tandem mass spectrometry (MS) and linear 

discriminant analysis. Conventional matrix assisted laser desorption/ionization (MALDI) MS 

has strong interference peaks from matrix ions in low mass region (<500 Da). This greatly 

limits the application of MALDI MS for analysis of small molecules such as disaccharides. 

Acidic fullerene matrix gives very clean background in the low mass region thus it serves as 

a good candidate for small molecules analysis. Disaccharides with different linkage types 

give different tandem mass profiles from various cross-ring fragmentation pathways. 

Disaccharides with the same linkage type but three different kinds of monosaccharide 

residues bear the same fragmentation profiles. However, the relative ratios of the fragment 

ion intensities were distinctively different among these three kinds of disaccharide isomers. 

Statistical tools including linear discriminant analysis were used to analyze the tandem mass 

spectra. Disaccharide isomers with both different linkages and different monosaccharide 

residues were successfully classified.  
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Introduction 

Carbohydrates are one of the most widely distributed molecules in nature and they 

serve crucial structural and functional roles in almost all living organisms.1 To name a few: 

they are the energy storage and fuels for many biological pathways as well as metabolic 

intermediates; the structural framework for RNAs/DNAs are formed with small 

carbohydrates as ribose and deoxyribose while celluloses are the major constituents of plant 

cell walls; carbohydrate conjugates with proteins or lipids are important mediators of 

biological recognitions and cellular interactions. It is not surprising that ambitious scientists 

have moved on to sequence carbohydrates after the other two major biopolymers as proteins 

and DNAs were successfully sequenced.2-5  

The very diversely biological activities of carbohydrates depend on their detailed 

structures, namely, the composition of monosaccharides, the positions of interresidue 

linkages and branches, and the anomeric configurations. A successful sequence of 

carbohydrates should cover all of the above aspects. Many traditional biochemistry methods 

for carbohydrate sequencing based on the use of different enzymes with various specificities 

that oligosaccharides can be cleaved at one type of linkage or position but not the others. 

Those methods require a lot of sample preparation and separation thus are very time 

consuming.6 Nuclear magnetic resonance (NMR) spectroscopy was frequently used to 

determine the structure of oligosaccharides but pure individual component was needed.7 

Mass spectrometry (MS) provides higher sensitivity and requires simpler sample preparation8 

compared with conventional methods. MS coupled with soft ionization such as MALDI and 

electrospray ionization (ESI) have been widely used in the study of carbohydrates in the past 

decades.9-13 Tandem MS is an indispensable tool for the structural analysis of carbohydrates 

as the fragments can provide detailed information about the structure. Collision induced 

dissociation (CID)10, 14, 15 and post source decay (PSD) 16, 17 are the two major methods to 

break oligosaccharides into fragments. Wavelength-tunable infrared multiple-photon 

dissociation tandem MS also enabled the differentiation of linkage and anomeric 

configuration of disaccharides.18 It is well known that neutral oligosaccharides are difficult to 

be ionized due to the lack of acidic or basic functional groups. Oligosaccharides have 
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stronger affinity to alkali metal, or alkaline earth metal ions than to protons, so it is common 

to include some additives such as lithium or sodium salts for detection of oligosaccharides.15, 

18 Ionization efficiency can also be improved by permethylation of the hydroxyl groups.19, 20 

This method also proves very effective in determining the branching feature of 

oligosaccharides by simply counting how many methyl groups were attached after 

fragmentation.19, 20 In the past decades, tandem MS was successfully used to identify the 

derivatization type and position, to elucidate the branching sites, and to distinguish different 

linkage positions.10, 14, 20 Most recently, the anomeric configuration (α or β) was distinguished 

for four pairs of disaccharide isomers.21 Monosaccharide isomers include glucose, galactose 

and mannose have been differentiated using tandem MS,22 as well as ion mobility MS.23 

However, the work of identifying the different monosaccharide residues as building blocks of 

oligosaccharides, which is a fundamental question for carbohydrate sequencing, is scare. To 

the best of our acknowledge, there was only one related report in which branched β-

cyclodextrins (CD) with glucose, or galactose, or mannose residue showed different relative 

intensities of y type fragments24 with PSD MALDI MS.16 Thus this work was devoted to 

address this problem as differentiating the different monosaccharide residues of disaccharides 

by using MALDI-tandem MS and discrimination/classification analyses. We believe this 

study will eventually benefit the real carbohydrate sequencing.  

One problem with conventional MALDI is that it is not suitable for the analysis of 

small molecules such as disaccharides (< 500 Da), because the analyte ions are strongly 

interfered with or suppressed by the matrix-related ions that are predominant at the low m/z 

range. Different approaches have been employed in MALDI MS to minimize the background 

in the low mass range. Reports include derivatization of the analyte molecules to a higher 

molecular weight25 or using a matrix with higher molecular weight such as porphyrin (MW 

974.6).26  Extra sample preparation was then needed, thereby limiting the classes of analytes 

that can be detected. Different inorganic materials including different metal powders and 

metal oxide nanoparticles27-29 have been tested as matrixes for surface-assisted laser 

desorption/ionization (SALDI). Those SALDI MS can provide a cleaner background than 

conventional MALDI MS as no interference peaks from the organic matrixes were present, 

but the application was very limited. Another matrix-free approach as laser 
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desorption/ionization on porous silicon (DIOS) was extensively studied since 1999.30 Porous 

silicon surfaces were etched from crystalline silicon chips with hydrofluoric acid and 

functionalized as the laser desorption/ionization matrix as well as trapping agents for analyte 

molecules. Small molecules including pharmaceuticals, nucleic acids, carbohydrates, and 

steroids were successfully detected.31 Recently, colloidal graphite has been reported as a 

successful matrix for detection of small molecules include oligosaccharides, fatty acids, 

phenolic compounds, and phospholipids.32, 33 However, there were still some background 

peaks of this colloidal graphite matrix in the positive ion mode. In this work, acidic fullerene 

was used as a novel matrix for detection of disaccharides, as it provides very clean 

background in lower mass range (<500Da), as well as decent detection sensitivity for small 

oligosaccharides. 

Discriminant and classification analyses are statistical techniques for description of 

group separation (discrimination) and prediction or allocation of observations to groups 

(classification). The basic idea is to establish group separation of original samples with 

regard to the discriminant functions, which are linear combinations of variables that best 

separate groups; and then to use the classification functions, which are derived from the 

discriminant functions, to predict the group membership of unknown samples.34 These 

methods have been used widely in many applications from classification of petroleum 

pollutants based on infrared spectra35 to differentiation of healthy tissues from cancer tissues 

based on the multiple metal elemental concentrations determined by X-ray emission.36 In this 

work, discriminant and classification analyses were successfully used to discriminate 

disaccharide isomers with different linkage types and different monosaccharide residues.  
 

Experimental Section 

Chemicals: The disaccharides trehalose, sophorose, 2α-mannobiose, 3α-galactobiose, 

3α-mannobiose, maltose, cellobiose, lactose, isomaltose, melibiose (as listed in Table 1) as 

well as monosaccharides ribose and glucose were purchased from Sigma-Aldrich (St. Louis, 

MO).  Dihydroxybenzoic acid (DHB) from Bruker Daltonics (Billerica, MA) was used as 

standard MALDI matrix. Acidic fullerene (C60CHCOOH) was obtained from Sigma-Aldrich 
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(St. Louis, MO).  Pure water was obtained from a MilliQ water purification system (Billerica, 

MA). Organic solvents and all other chemicals were purchased from Fisher Scientific 

(Fairlawn, NJ). 

Synthesis of the Propyl-linked Disaccharides: Nine propyl-linked disaccharides 

were synthesized as listed in Table 2. The syntheses of the 1,2-linked disaccharides 

DS198/DS204/DS223, and the 1,3-linked disaccharides DS90/DS101/DS95 began with the 

known glycosyl acceptors Allyl 3,4,6-tri-O-benzyl-β-D-glucopyranoside(1)37 and Allyl-4,6-

O-benzylidene-2-O-pivaloyl-α-D-glucopyranoside(2),38 respectively.  Trichloracetimidate 

donors: 2,3,4,6-Tetra-O-acetyl-α-D-glucopyranosyl trichloroacetimidate(3),37  2,3,4,6-Tetra-

O-acetyl-α-D-galactopyranosyl trichloroacetimidate(4),39 and 2,3,4,6-Tetra-O-acetyl-α-D-

mannopyranosyl trichloroacetimidate(5)37 were synthesized according to the literatures. 

Coupling of (1) or (2) with each of the three trichloracetimidate donors gave intermediate 

disaccharides with desired 1-2 or 1-3 linkages and all free hydroxyl groups protected. The 

final 1-2 or 1-3 linked propyl-disaccharides can be achieved after debenzylidenation, 

deacetylation, and catalytic hydrogenation steps. 

The syntheses of the 1,4-linked disaccharides DS232 (Glc-Glc-propyl) and DS247 

(Gal-Glc-propyl) started with the known trichloroacetimidates from cellobiose and lactose, 

respectively. The deprotected propyl glycosides DS232 and DS247 can be achieved after 

coupling the above intermediate disaccharides with n-propanol (to give the corresponding 

propyl-glycosides) and deacetylating. 1-4 linked disaccharide DS249 (Man-Glc-propyl)  

started with the known acceptor allyl 2,3,6-tri-O-benzyl- α-D-glucopyranoside which can be 

prepared from D-glucose in four steps.40  Glycosylation of this acceptor with donor 5 

provided disaccharide with protecting groups. The final 1-4 linked disaccharide DS249 can 

be achieved after debenzylidenation, deacetylation, and catalytic hydrogenation.  

Mass Spectrometry: For all mass spectrometric analysis, an LTQ linear ion trap 

mass spectrometer equipped with vMALDI ion source (Thermo Electron, Mountain View, 

CA) was used. The N2 laser (337 nm) is guided to the source by a fiber-optic cable and the 

laser power was set at 8-15 (arbitrary unit) for all MS experiments. 20 mg/mL DHB solution 

in 70% methanol and 30% water (containing a 0.1% trifluoroacetic acid) was prepared. 
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Acidic fullerene was dissolved in 50% iso-proponal and 50% water to give a saturated 

solution (about 0.1mg/ml). 

All disaccharides were dissolved in water to a concentration of 100 ng/µl before 

loading onto MALDI plate. Saccharide standards mixture was prepared by dissolving ribose, 

glucose, and lactose in water/acetonitrile/trifluoroacetic acid (49.95/49.95/0.1) to a final 

concentration of 500 pmol/µl each. 

Two-layer method was used for sample loading of all MALDI experiments: 2 µL of 

DHB, or acidic fullerene matrix solution was applied onto the stainless-steel sample plate and 

let to dry in air; then 1 µL of sample solution was applied on top of the dried matrix and let to 

dry in air before introduction into the mass spectrometer. 

Tandem MS spectra of disaccharides were collected by applying CID on sodiated 

disaccharide ions as mass selected precursors using standard isolation and excitation 

procedures (activation q value of 0.25, and activation time of 30 ms). The collision energies 

used were 30, 40, and 50 (arbitrary units). Data acquisition was carried out with Xcalibur 

data system. For each of the disaccharide sample, nine spectra were taken with three replicas 

for each of the three collision energies. Each tandem MS spectrum was averaged with 100 

laser shots.   

Discriminant and Classification Analyses: All statistical analyses were carried out 

in SPSS (Version 15.0 for Windows, SPSS Inc., Chicago, IL). The relative abundance of the 

selected product ions of disaccharides were tested for significance regarding different linkage 

types or different monosaccharide residues using a one factorial multivariate analysis of 

variance (MANOVA). Then, to determine which peaks that discriminate between groups 

defined by linkage types or monosaccharide residues, a step-wise discriminant analysis was 

carried out to calculate the canonical discriminant functions. The first two canonical 

discrimination functions normally can represent over 98% of the separation of different 

disaccharides. The classification functions were then obtained to predict the group which 

unknown samples belong to.  
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Results and Discussion 

Selection of Matrix: DHB vs. Acidic Fullerene  

Conventional MALDI matrixes such as DHB and CHCA are usually small organic 

acids and they give strong background in low mass region (< 500Da) under laser irradiation, 

which strongly interferes with the detection of small molecules such as mono- and di-

saccharides. Figure 1 shows the detection of the standards mixture of ribose, glucose and 

lactose with DHB and with acidic fullerene as matrix. With DHB, the three saccharide peaks 

were very low due to the strong interference and suppression by the strong matrix peaks 

nearby, as shown in the red circles in Fig.1a. For example, the [ribose + Na]+ peak was very 

close to the matrix peak of [DHB + Na]+, while the [glucose + Na]+ peak was very close to 

the matrix peak of [DHB + 2Na-H]+. With the acidic fullerene matrix, all the three small 

saccharides were well detected as sodium adducts. The background of acidic fullerene is 

quite clean in low mass range because the matrix molecule has larger molecular weight and 

the fullerene skeleton is hard to break into small fragments. The peak at m/z 305 was a 

fragment of lactose, which corresponds to a very common fragment of oligosaccharides with 

neutral loss of C2H4O2.  Another big advantage of acidic fullerene over DHB is that more 

homogeneous sample preparation can be achieved with the acidic fullerene matrix as no co-

crystallization process is involved. There are no more ‘sweet spots’ of samples but the 

analytes can be detected consistently over the whole sample loading area. For the detection 

and homogeneity reasons, acidic fullerene was selected as the matrix for this study. 

 

Linkage Type Discrimination of Disaccharides 

Ten disaccharides as listed in Table 1 are isomers of C12H22O11 with 5 different 

linkage types: 1-1, 1-2, 1-3, 1-4, and 1-6. Fragmentation of the sodium adducts of these 10 

disaccharides were studied. Figure 2 shows five MS/MS spectra of five disaccharides 

(trehalose, 2α-mannobiose, 3α-galactobiose, maltose, and isomaltose, each one represents 

one linkage type.) The ion at m/z 365  is the precursor ion of sodiated disaccharide,  and the 

ions at m/z 203 and 185 are the y and b ions from glycosidic cleavage.24 Water loss was 
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observed as the ion at m/z 347 for all of the disaccharides except trehalose (1-1 linkage). 

Fragments with neutral losses of CH2O, C2H4O2, C3H6O3, and C4H8O4, as common ions of 

disaccharides with cross-ring cleavages as reported previously,10, 14 were observed at m/z 335, 

305, 275, and 245, respectively. The tandem MS spectra of other five disaccharides, 

sophorose, 3α-mannobiose, cellobiose, lactose, and melibiose, are not shown, as they all have 

similar pattern as the disaccharides with the same linkage type as shown in Fig. 2. The 

spectra clearly show that disaccharides with different linkage types give distinct 

fragmentation profiles, such as 1-1 linked disaccharide gives strong y ion (m/z 203) but very 

few fragments from cross-ring cleavages; while 1-2 linked disaccharide gives strong neutral 

loss of C4H8O4 (m/z 245). This kind of observation has been used to identify the linkage type 

of oligosaccharides by manually confirming the presence or absence of these fragments.10  

The tandem MS spectra of the 10 disaccharides were tested by MONOVA against 5 

different linkage types, and significant differences were found among the different linkage 

types. Subsequently linear discriminant analysis (LDA) was performed to calculate 

discriminant functions for differentiation of those linkage isomers of disaccharides. Four 

canonical discriminant functions (CDF) were generated in which the first two explained 

98.8% of the total variance with a very good correlation value (1.00). The first two CDFs 

were plotted in Figure 3 for all the MS/MS spectra of 10 disaccharides (nine spectra included 

for each of the disaccharide: three replicas for each of the three collision energies). Clearly, 

the ten disaccharides were grouped into five classes, with each class represents one kind of 

linkage type. Based on this, 100% of the original data input can be correctly classified into 

the right groups. The distance between the centroid of each class reflects the difference 

between different groups. For example, disaccharides with 1-4 linkage are close to those with 

1-6 linkage, while disaccharides with both linkage types are very different from those with 1-

2 linkage. This conclusion can be also appreciated from the similarities of fragment patterns 

of the disaccharides as shown in Fig. 2.  
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Residue Discrimination of Disaccharides with Three Different Linkage Types 

Due to the unavailability of commercial disaccharide isomers with different 

monosaccharide residues, nine disaccharides (as listed in Table 2) were synthesized 

according to the procedures described in the experimental section. These nine disaccharides 

were designed to contain the same glucose residue (with propyl- group attached to the C1 

position) on the reducing end, but three different monosaccharide residues (glucose or 

galactose or mannose) on the non-reducing end. On the other hand, the nine disaccharides 

were synthesized with three different linkage types: 1-2, 1-3, and 1-4 (see Table 2). MS/MS 

spectra of all nine synthesized disaccharides were collected as shown in Figure 4.  As 

discussed earlier, disaccharides with the same linkage type gave a similar fragment pattern. It 

can be observed as the similar presence/absence of specific fragments for the three spectra in 

each column (A1-A3, B1-B3, and C1-C3) of Fig. 4. If we compare the three spectra in each 

column, one trend can be observed for all three different linkage types that the intensity ratio 

of each smaller fragment ion to the ion at m/z 347 was always the highest for disaccharides 

with galactose residue, and the lowest for disaccharides with mannose residue.  

Relative fragment ion intensities of each MS/MS spectra were input for residue 

discriminant analysis. The first two canonical discriminant functions were plotted as Figure 5. 

Even though the statistics show that all the nine disaccharides could be correctly classified 

into three groups as shown in different colors, clearly the discrimination was not as good as 

in Fig. 3, especially for the data points in the highlighted rectangular in the middle region of 

Fig. 5. Such data points represented the MS/MS spectra inputs of disaccharides with 1-3 

linkage only. Compared with the MS/MS spectra of 1-2 or 1-4 linked disaccharides, relative 

fragments intensities to the base peak were much lower for 1-3 linked disaccharides (as 

shown in Fig. 4 that the lower mass region was ten times magnified). It is believed that such 

low relative intensities cause high error when the CDFs were calculated for all the nine 

disaccharides. 
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Two-Step Residue Discrimination of Disaccharides 

To improve the discrimination of disaccharide isomers with different residues, a two-

step discrimination was performed. In the first step, the disaccharides with 1-3 linkage were 

separated from those with 1-2 and 1-4 linkages by discriminant analysis. This step was 

straightforward and the resulting plot (not shown) was similar to Fig. 3. In the second step, 

the disaccharides with each individual linkage type were tested for residue discrimination by 

discriminant analysis. Good discrimination of residues were achieved for disaccharides with 

all three linkage types, as shown in Fig. 6a for the disaccharides with 1-3 linkage and Fig. 6b 

for those with 1-2  and 1-4 linkages. Compared with direct residue discrimination as shown 

in Fig. 5, this two-step discrimination provides much better separation between three 

different groups, which can be judged by the distance between centroid of each group 

relative to the spread of data points within each group. One interesting feature about this two-

step discrimination method is that the same CDFs can be applied for the disaccharides with 

both 1-2 linage and 1-4 linkage types without ruining the discrimination power, as shown in 

Fig. 6b.  

The classification functions can be used to determine to which group each case most 

likely belongs to. There are as many classification functions as there are groups. Each 

function allows us to compute classification scores of the case for each groups, and the case 

would be assigned to the group for which it has the highest classification score. This analysis 

is useful to test the classification of unkown samples, unfortunately there are no more propyl-

labeled disaccharides available. For this reason all the data used for discriminant analysis as 

in Fig. 6 are cross validated for classification, in which each case was classified by the 

functions derived from all cases but the one need to be validated.  In another word, that case 

was regarded as an unknown but all other cases were used to calculate the classification 

functions. For all the cases, the cross validation was 100% correct.  
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Discrimination of Bi- and Tri-nary Mixtures of 1-3 Linked Propyl-disaccharides 

In principle, the CDFs are calculated as the linear combination of the original variable 

input, in this case, the relative ion intensities of each fragment.34 This linear characteristic 

allows LDA to distinguish the composition of a mixture if all individual components are 

available. To show this capability of LDA, three 1-3 linked propyl-disaccharides (DS 90, DS 

101, and DS 95 as listed in Table 2) were selected and mixed to give binary or trinary 

mixtures. MS/MS spectra of those mixtures as well as those from three individual standards 

were collected and the relative intensities of each fragment ions were inputted for LDA. The 

discrimination of those mixtures from the standards was plotted as Figure 7. Clearly seven 

groups can be observed and each one represents one species (individual standard or mixture). 

If we draw a triangle with the group centroids of the three standards, all three binary mixtures 

were along the three edges, while the data points of trinary mixture were inside the triangle. 

The location of mixture data points reflects the prediction of the origins of the mixture 

samples regarding to the three individual standards. Based on the location in the CDF plot, 

the composition of the mixtures can be qualitatively determined. 

 

Conclusions 

With acidic fullerene as a matrix, small oligosaccharides were well detected. By 

analyzing tandem MS spectra with linear discriminant analysis, disaccharide isomers with 

five different linkage types and three different monosaccharide residues (on the non-reducing 

end) were successfully differentiated. Residues discrimination can be done for all the 

disaccharides with three linkage types simultaneously, but it was not as good as the linkage 

types discrimination, presumably due to the too low relative intensities of the fragment ions 

for the 1-2 linked disaccharides. In order to improve the discrimination of residues, 

disaccharides were first tested to differentiate the linkage type, and were later tested for the 

residue discrimination of  disaccharides with individual linkage type. This two-step 

discrimination method improved the performance of residue differentiation effectively. 

Interestingly, residues of disaccharides with 1-2 linkage and 1-4 linkage can be differentiated 

with the same set of discriminant functions. The discrimination was not sensitive to the 
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collisional energies(CE) and tandem MS data from three different CEs (30-50, arbitrary units) 

were incorporated together for this study. The robustness of this method was also reflected 

by the fact that different residues of disaccharide isomers were successfully discriminated, no 

matter what anomeric configurations they are (as shown in Table 2). 

Due to the limitation of the availability of disaccharide samples, the discrimination of 

monosaccharide residues were performed for nine synthesized disaccharides with 1-2, 1-3, 

and 1-4 linkages only. It is worth to mention that the nine synthesized disaccharides were 

attached with a propyl- group to facilitate the synthesis process. However this propyl group 

complicated the interpretation of tandem MS spectra of such disaccharides. For example, 

both neutral loss of water (H2O, 18Da) and that of the propyl group (C3H6, 42Da) were 

observed, while it is also very common to lose C2H4O2 (60Da) during fragmentation of 

oligosaccharides. It requires a very high resolution (R~10,000) to resolve the fragment ion 

with neutral loss of C2H4O2 from that with losing both H2O and the propyl group. 

Unfortunately, such high resolution is not always available for many of the mass instruments 

include the one used in this study. Nevertheless this current study proved the feasibility that 

linkage types and monosaccharide residues of disaccharide isomers could be differentiated 

by LDA of the tandem MS data, and this method can also be applied for analysis of the 

mixtures, as long as all the standard compounds are available. We strongly believe that this 

result will benefit the structure determination of oligosaccharides and eventually the real 

carbohydrate sequencing. 
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Table 1. List of ten commercially available disaccharides purchased from Sigma and 

used for linkage type determination. The MS/MS spectra showed in Figure 2 were 

collected from disaccharides of the top row of each linkage type. 

 

 1-1 linkage 1-2 linkage 1-3 linkage 1-4 linkage 1-6 linkage 

C12H22O11 Trehalose  

 

2α-Mannobiose

Sophorose 

 

3α-Galactobiose

3α-Mannobiose 

 

Maltose 

Cellobiose 

Lactose 

Isomaltose 

Melibiose 
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Table 2. List of nine synthesized disaccharides used for monosaccharide residues 

determination. The MS/MS spectra of each disaccharide were shown in Figure 4. 
 

 

1-2 linkage 

β-Glc 

 
1-3 linkage 
α -Glc 

1-4 linkage 

α / β-Glca 

R = β-Glc 

 

 

DS 198 

 

DS 90 

 

DS 232 

R = β-Gal 

 

 

DS 204 

 

DS 101 

 

DS 247 

R = α-Man 

O
HO

HO

OH

O

OH

 

 

DS 223 

 

DS 95 

 

DS 249 

 

a. β  for DS232 and DS247, α for DS249 
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Figure Captions 

Figure 1. Mass spectra of saccharide mixture: ribose, glucose, and lactose with DHB 

(a) and acidic fullerene matrix (b).  The peak at m/z 305  in (b) is a fragment of lactose. 

Sample loading: 500 pmole of each. All three standards were detected as [M+Na]+ ions. 

Figure 2. Representative MS/MS spectra of disaccharides with 1,-1, 1-2, 1-3, 1-4, 

and 1-6 linkage types. Every spectrum was averaged for 100 laser shots. 

Figure 3. Linear discriminant analysis of linkage types: all ten disaccharides were 

grouped into five classes that each class represents one kind of linkage type. Nine spectra 

were inputted for each disaccharide: three replicas for each of three different collision 

energies. Every spectrum was averaged for 100 laser shots. 

Figure 4. Representative MS/MS spectra of nine propyl-disaccharides with three 

different monosaccharide residues (glucose, galactose, and mannose) and three different 

linkage types (1-2, 1-3, and 1-4). Every spectrum was averaged for 100 laser shots. 

Figure 5. Discrimination of three monosaccharide residues for all the nine 

synthesized disaccharides with three kinds of linkage types. Three groups can be recognized 

but the classification is not good especially for those center data points, which correspond to 

the disaccharides with 1-3 linkage. 

Figure 6. Discrimination of monosaccharide residue for disaccharides with 1-3 

linkage only (a) and disaccharides with 1-2 and 1-4 linkages (b). The same discriminant 

function can be used for both disaccharides with 1-2 and 1-4 linkages. 

Figure 7. Discrimination of binary and trinary mixture of three 1-3 linked 

disaccharides. The location of the mixture cluster reflects the origin of the original 

components. 
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Figure 1. 
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Figure 2. 
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Figure 3. 

 

 

 

 

 

 

 



www.manaraa.com

147 
 

 

Figure 4. 
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Figure 5. 

 

 

 

 

 

 

 



www.manaraa.com

149 
 

 

Figure 6. 
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Figure 7. 
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CHAPTER 7. GENERAL CONCLUSIONS 

Analytical chemistry is the science of chemical measurements which include 

detection, separation, identification and quantification. It is our job as analytical chemists to 

develop new methods as well as to keep improving the existing analytical chemistry 

techniques to meet the increasing demands from all kinds of chemical and biological 

researches. This is well reflected in the projects discussed in this dissertation.  

In this dissertation, the detection sensitivity for proteins separated by SDS-PAGE was 

improved hundreds of times to pictogram level, by using side entry laser induced native 

fluorescence detection. Novel biomarkers for prostate and breast cancers were separated and 

identified using CE and other spectroscopic methods. Adsorption properties of protein on 

fused silica surface was studied and cross validated by computational simulation, CE, and 

single molecule spectroscopy. Carbon based matrixes include colloidal graphite and fullerene 

derivatives were developed for detection, profiling and imaging of small molecules with 

MALDI MS. Identification of disaccharide isomers with different non-reducing end 

monosaccharide residues were demonstrated for the first time with tandem MS and 

discriminant analysis.  

We hope that all these discoveries and developments in this dissertation will find a 

large number of applications in analytical and bioanalytical studies. 
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